Effects of the Changing Climate and Emissions on the Air Quality in the U.S. National Parks

Maria Val Martin (CSU) and Colette L. Heald (MIT) J-F Lamarque, S. Tilmes and L. Emmons (NCAR)

Massachusetts Institute of Technology

Thanks to the National Park Service for funding

Effect of Climate and AQ on Forest Systems

Rocky Mountain NP affected by Haze

http://www.nature.nps.gov/

- High O₃ levels injure O₃ sensitive plants, and impact the health of park visitors and employees.
- Fine particles create haze in the park, affecting visibility.
- N deposition produces loss in biodiversity.

About 50% of forests will be exposed to damaging O_3 by 2100; and 20% will exceed critical loads from S and N deposition by 2050 [FAO, 2007]

NCAR Community Earth System Model (CESM 1.0.3)

Model Evaluation: PM2.5 (=SO₄+NH₄NO₃+BC+2xOC+Fine DST+SSLT)

Model 2000 with IMPROVE observations (1998-2010)

Annual average

Chemical Speciation

Overall, model captures the magnitude and spatial gradient of much of the IMPROVE PM2.5 observations

Fine Dust and Seasalt were adjusted to match observations

Emissions reduced by a factor of 2 and used an improved soil erodibility map

SeaSalt

Further Model Evaluation: Ozone

Model 2000 with CASTNET Observations (1995-2005)

Annual average

Summer Daily Max 8-hr Avg Surface O₃

- O₃ is simulated well over western US, and overestimated over eastern US (~20 ppb).
- This strong positive bias in CESM and other models is well know [e.g., Fiore et al, 2008, Brown-Steiner and Hess, 2011].

Temperature does not explain the O₃ bias over the eastern US

Annual Average

Summer Afternoon (13:00-15:00) Average

- On an average, model captures the magnitude and spatial gradient of much of the temperature
- Summer afternoon temperature is slightly overestimated

CAM-Chem returns higher isoprene when interacting with CLM

Important effect on the quantification of O₃ changes in the future

Effects on Changes in Climate Alone

Annual Average in 2000

Temperature

2050 RCP 4.5 - 2000

2050 RCP 8.5 - 2000

Precipitation

Effects of Global Change on AQ: Ozone

Summer Daily Max 8-hr Avg Surface O₃

RCP 8.5

Quantifying the change in O₃ due to changing climate and emissions

exchange in response to climate

Effects of Global Change on AQ: PM2.5

Annual Average PM 2.5

∆Total =2050-2000

Change in PM2.5 due mainly to SO_4 and NH_4NO_3 emission reduction

Changes in Chemical Speciation

What is next?

- Better quantification of changes resulting from climate, anthropogenic and natural emissions alone.
- Consider the effects of land cover/land changes.
- Study the effect of nitrogen deposition.
- Perform high resolution (1x1 or 0.5x0.5) simulations and analyze the effect of spatial resolution on the results.
- Focus on the air quality over the U.S. NP