Impact of Ocean Model Resolution on CCSM4 Simulations

"Peta-Apps"-Team

Ben P. Kirtman, Cecilia Bitz, Frank Bryan, William Collins, John Dennis, Nathan Hearn, James L. Kinter III, Richard Loft, Clem Rousset, Ben Shaw, Leo Siqueira, Cristiana Stan, Robert Tomas and Mariana Vertenstein

Outline

- Motivation:
- Scale Interactions - How Do Ocean Eddies Impact the Large Scale Climate?
- Minobe et al. (2008) - Nature
- Number of Previous Studies Focused on Atmospheric Resolution
- Recent focus on the Importance of Ocean Eddies
- Toniazzo et al. (2009); Zheng et al (2009); McWilliams and Colas (2010)
- McClean et al. (2011); Bryan et al. (2010)
- Order 10-20 Year Simulations

- CCSM3.5*
- Atmosphere: 0.5x0.5
- Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC']
- Spin-Up Issues/Polar Filter
- Ubiquitous Warm Signal
- Ocean Heat Transport, Ice Albedo Feedback, Water Vapor Feedback, Cloud Partitioning
- Survey of Large Scale Climatic Features
- North Atlantic: Gulf Stream, Air-Sea Feedbacks
- North Pacific: Kuroshio
- Equatorial Pacific: ENSO, TWIs, ENSO-symmetry

Global Ocean Temperature Drift

- CCSM3.5*
- Atmosphere: 0.5x0.5
- Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC']
- Spin-Up Issues/Polar Filter
- Ubiquitous Warm Signal
- Ocean Heat Transport, Ice Albedo Feedback, Water Vapor Feedback, Cloud Partitioning
- Survey of Large Scale Climatic Features
- North Atlantic: Gulf Stream, Air-Sea Feedbacks
- North Pacific: Kuroshio
- Equatorial Pacific: ENSO, TWIs, ENSO-symmetry

(b) $0.5^{\circ} \quad$ Mean $=-0.002$, RMS $=1.016$

Increasing OGCM Resolution: Eddy Permitting vs. Resolving

Increasing OGCM Resolution: Eddy Permitting vs. Resolving

Affect of Resolved Ocean Eddies

- CCSM4
- Atmosphere: 0.5x0.5
- Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC]

Annual Mean SST Difference HRC-LRC

$\begin{array}{lllll}-5 & -4.5 & -4 & -3.5 & -3\end{array}$

Annual Mean Precipitation HRC-LRC

Annual Mean Precipitation HRC,LRC

Annual Mean Precipitation CMAP

Annual Mean Precipitation HRC,LRC

March Sea Ice Concentrations

HRC

LRC

September Sea Ice Concentrations

HRC

LRC

Global Merid. Heat Transp.

Eddy

Northward Ocean Heat Transport Dominated by Changes in Mean Transport

Short Wave Absorbed at the Surface: HRC-LRC

North Pole: Ice-Albedo Feedback
Western Boundary Current Region: Repartitioning of Clouds Decrease Short Wave Absorbed in Tropics and Sub-Tropics

Vertically Integrated Water Vapor: HRC-LRC

- Water Vapor Feedback - Long Wave Radiation Warming
- CCSM3.5*
- Atmosphere: 0.5x0.5
- Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC']
- Spin-Up Issues/Polar Filter
- Ubiquitous Warm Signal
- Ocean Heat Transport, Ice Albedo Feedback, Water Vapor Feedback, Cloud Partitioning
- Survey of Large Scale Climatic Features
- North Atlantic: Gulf Stream, Air-Sea Feedbacks
- North Pacific: Kuroshio
- Equatorial Pacific: ENSO, TWIs, ENSO-symmetry

SST Standard Deviation Ratio HRC06/LRC

Sea Surface Height Standard Deviation

LRC SSH

HRC SSH

SST: Observational Estimate

SST: Observational
 Estimate
 $\begin{array}{llllllllllllllllllllllllllll}6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28\end{array}$

${ }_{48 N}$ Rainfall: HRC, and LRC

3	3.5	4	4.5	5	5.5	6	6.5	

Local SSTA-Latent Heat Flux Correlation

$-0.65-0.6-0.55-0.45-0.4-\frac{0.55-0.25-0.2-0.15-0.1}{} 0.10 .150 .20 .250 .350 .40 .450 .550 .60 .0 .65$

Local SSTA-Latent Heat Flux Correlation

Local SSTA-Latent Heat Flux Correlation

$-0.65-0.6-0.55-0.45-0.4-0.35-0.25-0.2-0.15-0.110 .10 .150 .20 .250 .350 .40 .450 .550 .60 .65$

SST Standard Deviation Ratio HRC06/LRC

SST Standard Deviation Ratio HRC06/LRC

Equatorial SSTs

Equatorial Pacific SST Standard Deviation

Tropical Instability Waves: SST 3-6N

- CCSM3.5*
- Atmosphere: 0.5x0.5
- Two Versions: 1x1 [LRC] and 0.1x0.1 [HRC']
- Spin-Up Issues/Polar Filter
- Ubiquitous Warm Signal
- Ocean Heat Transport, Ice Albedo Feedback, Water Vapor Feedback, Cloud Partitioning
- Survey of Large Scale Climatic Features
- North Atlantic: Gulf Stream, Air-Sea Feedbacks
- North Pacific: Kuroshio
- Equatorial Pacific: ENSO, TWIs, ENSO-symmetry

