NCAR's CMIP-5 mirror

/project/cmip5/ETH/cmip5/

http://www.cgd.ucar.edu/ccr/bsander/cmip5

Number of simulations (mon) --- Status: Wed Mar 14 14:30:36 MDT 2012

Experiment: piControl

Ensemble: all

ATM	HadGEM2-ES	HadGEM2-A	HadCM3	bcc-csm1-1	GISS-E2-H	GISS-E2-R	inmcm4	CNRM-CM5	IPSL-CM5A-LR	NorESM1-M	CanCM4	CanESM2	CanAM4	CSIRO-Mk3-6-0	MJ
clt	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
hfls	1/1	0	0	1/1	1/2	1/2	1/1	1/1	1/1	1/1	0	1/1	0	1/1	1
hfss	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/1	0	1/1	0	1/1	1
hus	1/1	0	0	1/1	0	0	1/1	1/1	1/1	1/2	0	1/1	0	0/1	1
pr	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
prc	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
prsn	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
prw	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/1	0	1/1	0	1/1	1
psl	1/1	0	0	1/1	1/2	2/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
rlds	1/1	0	0	1/1	1/2	3/4	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
ridscs	1/1	0	0	1/1	1/1	1/2	1/1	1/1	1/1	1/1	0	1/1	0	1/1	1
rlus	1/1	0	0	1/1	1/2	2/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
rlut	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
rlutcs	1/1	0	0	1/1	1/1	1/2	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
rsds	1/1	0	0	1/1	1/2	1/3	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
rsdscs	1/1	0	0	1/1	1/1	1/2	1/1	1/1	1/1	1/2	0	1/1	0	1/1	1
- verde		- 214			4.12	216	1/4	- 10-	1/1						

CACCOUC Perturbed Physics Experiment Ben Sanderson

Wednesday, March 14, 12

I (the past)

•CAMcube and lessons learned

ll (the future)

Semi-empirical surregate models
COSP-based cloud parameter constraints
Optimal ensemble generation

•81x3 15yr simulations

81x3 15yr simulations ~2 million hours CPU time

81x3 15yr simulations ~2 million hours CPU time ~60 MWh (on Jaguar)

81x3 15yr simulations
~2 million hours CPU time
~60 MWh (on Jaguar)
94 tonnes CO₂ emitted (coal)

81x3 15yr simulations
~2 million hours CPU time
~60 MWh (on Jaguar)
94 tonnes CO₂ emitted (coal)
17 round-the-world flights

81x3 15yr simulations
~2 million hours CPU time
~60 MWh (on Jaguar)
94 tonnes CO₂ emitted (coal)
17 round-the-world flights

• 1/2 million bikes up the Mesa

- •81x3 15yr simulations
- •~2 million hours CPU time
- •~60 MWh (on Jaguar)
- •94 tonnes CO₂ emitted (coal)
- •17 round-the-world flights
- 1/2 million bikes up the Mesa
- Ix10⁻⁷K additional warming above RCP4.5 (S=3.5K)

I. Constraint of large scale response variables

I. Constraint of large scale response variables2. Optimal Parameter Search

Jackson et al (2008)

I. Constraint of large scale response variables

- 2. Optimal Parameter Search
- 3. Specific variable optimization

I. Constraint of large scale response variables

- 2. Optimal Parameter Search
- 3. Specific variable optimization
- 3. Process / Feedback analysis

Aims:

- •Small ensemble of 'plausible' models
- •Representing systematic uncertainty in cloud feedbacks

CAMcloud proposed ensemble

- •CAM5 physics
- •6 million hours CPU time
- •Perturbations to cloud, microphysics and land surface

parameters

- •Stage I: Monte-Carlo sampling strategy (AMIP & 4XCO2)
- •Stage II: Optimal ensemble (RCP)

Surrogate Models neural network approach

Sanderson et al (2008)

Surrogate Models CAMcube example

The curse of dimensionality

	Variable		Range		Dependention	Namelist	File Name	
	Name	Low Default		High	Description	Prefix	(.F90)	
1	rhminh^	rhminh^ 0.65 0.80 0.8		0.85	Threshold RH for fraction of high stable clouds	cldfrc_	cloud_fraction	
2	rhminl [*]	0.80	0.80 0.91 0.99		Threshold RH for fraction of low stable clouds	cldfrc_	cloud_fraction	
3	rligice	8.4	14.0	19.6	Effective radius of liq. cloud droplets over sea ice	cldopt_	pkg_cldoptics	
4	rligland	4.8	8.0	11.2	Effective radius of liquid cloud droplets over land	cldopt_	pkg_cldoptics	
5	rliqocean	8.4	14.0	19.6	Effective radius of liquid cloud droplets over ocean	cldopt_	pkg_cldoptics	
6	ice_stokes_fac^	0.25	0.50	1.00	Scaling factor applied to ice fall velocity	cldsed_	pkg_cld_sedimnent	
7	capnc	30.0	150.0	155.0	Cloud particle num. density over cold land/ocean	cldwat_	cldwat	
8	capnsi	10.0	75.0	100.0	Cloud particle number density over sea ice	cldwat_	cldwat	
9	capnw	150.0	400.0	500.0	Cloud particle number density over warm land	cldwat_	cldwat	
10	conke^	2.0e-6	5.0e-6	10.0e-6	Evaporation efficiency of stratiform precipitation	cldwat_	cldwat	
11	icritc^	2.0e-6	9.5e-6	18.0e-6	Threshold for autoconversion of cold ice	cldwat_	cldwat	
12	icritw^	1.0e-4	2.0e-4	10.0e-4	Threshold for autoconversion of warm ice	cldwat_	cldwat	
13	r3lcrit	5.0e-6	10.0e-6	14.0e-6	Critical radius at which autocon, becomes efficient	cldwat_	cldwat	
14	fac	10.0	100.0	200.0	ustar parameter in PBL height diagnosis	hbdiff_	hb_diff	
15	fak	4.25	8.50	17.00	Constant in surface temperature excess	hbdiff_	hb_diff	
16	ricr	0.1	0.3	1.0	Critical Richardson number for boundary layer	hbdiff_	hb_diff	
17	betamn	0.02	0.10	0.30	Minimum overshoot parameter	hkoonv_	hk_conv	
18	c0^	0.3e-4	1.0e-4	2.0e-4	Shallow convection precipitation efficiency	hkoonv_	hk_conv	
19	cmftau^	900.0	1800.0	14400.0	Time scale for consumption rate of shallow CAPE	hkoonv_	hk_conv	
20	sgh_scal_fac	0.8	1.0	1.2	Land roughness scaling factor	physpkg_	physpkg	
21	alfa	0.05	0.10	0.60	Initial cloud downdraft mass flux	zmconv_	zm_conv	
22	c0_Ind^	1.0e-3	3.5e-3	6.0e-3	Deep convection precipitation efficiency over land	zmconv_	zm_conv	
23	c0_ocn^	1.0e-3	3.5e-3	6.0e-3	Deep convec. precipitation efficiency over ocean	zmconv_	zm_conv	
24	capeImt	20.0	70.0	200.0	Threshold value for CAPE for deep convection	zmconv_	zm_conv	
25	dmpdz	-2.0e-3	-1.0e-3	-0.2e-3	Parcel fractional mass entrainment rate	zmconv_	zm_conv	
26	ke^	0.5e-6	1.0e-6	10.0e-6	Environmental air entrainment rate	zmconv_	zm_conv	
27	tau	1800.0	3600.0	28800.0	Time scale for consumption rate of deep CAPE	zmconv_	zm_conv	
28	cdn_scal_fac	0.8	1.0	1.2	Ocean roughness scaling factor	(drv_in)	shr_flux_mod	
29	z0m_scal_fac	0.8	1.0	1.2	Mois. & heat resistance to vegetation scaling factor	(Ind_in)	Biogeophysics1Mod	

27 parameters, 3 values each 7.62559748 × 10¹² simulations

Surrogate Models

neural network approach

Surrogate Models semi-empirical approach

a demonstration

SCAMcube a demonstration

Cloud Fraction at 500mb

Sanderson et al (in prep)

SCAMcube a demonstration

Reduced form output

SCAMcube a demonstration

SCAMcube breaking the curse?

Wednesday, March 14, 12

Cloud Feedback calculations

Sanderson and Shell (submitted)

Completed:

•Single variable, single SCAM neuron

CAMcloud:

- Multivariate emulation (focus on COSP output)
- •Multiple SCAM neurons in different climatic regimes

Distant Future

•CLM neurons for land model emulation

- I Initial ensemble, AMIP & 4XAMIP w. COSP output
- 2 large Semi-empirical surrogate ensemble
- 3 Optimize surrogate for each CFMIP member, determine errors in cloud feedback estimates
- 4 Optimize surrogate for observations.
- 5 Optimal ensemble (RCP, flux corrected):
 - •Skill score
 - •Model diversity (clustering)
 - Representative Feedback spread

Timeline

- •April/May 2012 proposal evaluation
- •Summer-Fall 2012 Initial AMIP ensemble
- •Fall-??? Optimal ensemble available