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Outline

•Semi-empirical surregate models
•COSP-based cloud parameter constraints
•Optimal ensemble generation

•CAMcube and lessons learned

I (the past)

II (the future)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations
•~2 million hours CPU time

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations
•~2 million hours CPU time
•~60 MWh (on Jaguar)

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations
•~2 million hours CPU time
•~60 MWh (on Jaguar)
•94 tonnes CO2 emitted (coal)

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations
•~2 million hours CPU time
•~60 MWh (on Jaguar)
•94 tonnes CO2 emitted (coal)
•17 round-the-world flights

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations
•~2 million hours CPU time
•~60 MWh (on Jaguar)
•94 tonnes CO2 emitted (coal)
•17 round-the-world flights
•1/2 million bikes up the Mesa

Sanderson (2011)

Wednesday, March 14, 12



0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=0

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6

rhminh

dmpdz=−.5e−3

vice small

ic
rit

c

0.7
0.8

0.9

0.5
1

1.5
2

5

10

15

x 10−6  

rhminh

dmpdz=−1.0e−3

vice small 

ic
rit

c

Climate Sensitivity (K)

2.4 2.7 3 3.3

CAMcube

•81x3 15yr simulations
•~2 million hours CPU time
•~60 MWh (on Jaguar)
•94 tonnes CO2 emitted (coal)
•17 round-the-world flights
•1/2 million bikes up the Mesa
•1x10-7K additional warming 
above RCP4.5 (S=3.5K) 

Sanderson (2011)

Wednesday, March 14, 12



1. Constraint of large scale response variables

Murphy et al (2004)
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2. Optimal Parameter Search

ranging values selected for parameters TAU and
RHMINH and more tightly constrained values for
ALFA, ke, RHMINL, and c0.

Relative to the default configuration, systematic er-
rors of the optimized model configurations were re-
duced by an average of 7% (Fig. 2a). There were con-
sistent reduction in errors related to low-level clouds
(averaging 3% improvement, Fig. 2b), shortwave radia-
tion reaching the surface (averaging 14% improvement,
Fig. 2e), surface latent heat flux (averaging 4% im-
provement, Fig. 2k), zonal mean air temperature (av-
eraging 4% improvement, Fig. 2m), zonal winds (aver-
aging 6% improvement, Fig. 2n), and sea level pressure
(averaging 5% improvement, Fig. 2o), and precipita-
tion (12% improvement, Fig. 2p). Some fields became
worse such as midlevel clouds (averaging !10% deg-
radation, Fig. 2c), high-level clouds (averaging !6%
degradation, Fig. 2d), and net shortwave radiation at
the top of the atmosphere (averaging !7% degrada-
tion, Fig. 2f). There were mixed results or relatively
minor changes in skill for the remaining fields. Thus,
the similar cost values achieved for all six optimal
model configurations is achieved through different
compromises in model skill for predicting constrained
fields.

The optimization process also provided unantici-

pated performance gains in the frequency distribution
of hourly rain rates (Fig. 3). The default configuration
of CAM3.1 as well as many other climate models typi-
cally drizzles too often with little ability to simulate
observed heavy rainfall events (Deng et al. 2007; Wil-
cox and Donner 2007). Five of the six optimized
CAM3.1 configurations were able to capture the ob-
served distribution of heavy and light rainfall events of
the tropical Pacific ITCZ region. Because the variabil-
ity of rainfall rates is not targeted in the model skill
scores, these improvements could have only been
achieved indirectly through the long-term seasonal
mean constraints that were included. There also ap-
pears to be a correlation between model configurations
with larger values of the rate at which clouds consume
available potential energy (TAU), and the emergence
of extreme rainfall rates.

Tests were performed to evaluate the extent to which
the parametric uncertainties remaining among the op-
timized configurations would affect the model’s equi-
librium response to a doubling of atmospheric CO2

concentrations. The default CAM3.1 configuration sen-
sitivity of 2.4°C near-surface global mean annual mean
air temperature change is on the lower end of sensitivi-
ties relative to the scatter among two generations of
models (Fig. 4). However, after optimization, five of the

FIG. 1. Posterior probability for 6 parameters of CAM3.1 important to clouds and convection (see Table 1): (a) ALPHA, (b) TAU,
(c) ke, (d) RHMINH, (e) RHMINL, and (f) c0. The histograms are derived from the 332 experiments whose cost values were the same
or showed an improvement over the default model configuration. The parameter values of the default model are given by an asterisk
(*). The values of the top performing 6 parameter sets are labeled by the particular line number that produced them.

15 DECEMBER 2008 J A C K S O N E T A L . 6703

Jackson et al (2008)

1. Constraint of large scale response variables
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3. Specific variable optimization
2. Optimal Parameter Search
1. Constraint of large scale response variables
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3. Specific variable optimization
2. Optimal Parameter Search
1. Constraint of large scale response variables

3 Results

3.1 Verification of zonally averaged approximation

Before the distributions of feedbacks in climatepredic-
tion.net may be compared to that in the CMIP-3 ensemble, it

is necessary to verify that the zonally averaged kernels can

reproduce similar values to the fully gridded kernels used in
Soden et al. (2008). Figure 2 demonstrates the distribution

of CMIP-3 kernel derived feedbacks using both approaches,

and both results are presented in Tables 2 and 3. We find that,
in general, the zonally averaged kernel is an acceptable

approximation to the full gridded calculations, with a mean

error of less than 0.1 Wm-2 K-1 (see Tables 3, 4).

3.2 The climateprediction.net feedback distribution

The distribution of the models in the climateprediction.net

ensemble can thus be compared with that of the CMIP-3

ensemble. We find a similar range of longwave non-cloud
feedbacks in the CMIP-3 ensemble and the climatepre-
diction.net ensemble. Figure 2 shows that the longwave

water vapor feedback varies in both ensembles by
0.6 Wm-2 K-1. Atmospheric temperature feedbacks vary

in the CMIP-3 ensemble by more than 1.0 Wm-2 K-1,

while the climateprediction.net distribution varies by
0.8 Wm-2 K-1. The apparent spread of feedback strength

in the climateprediction.net ensemble may, however be an
underestimate, as discussed in Sect. 3.3.

Fig. 2 A comparison of global mean feedback values for different
variables. Variables represent Longwave and Shortwave Water
Vapor, Atmospheric Temperature, Surface Temperature, Lapse Rate,
Albedo, Lapse Rate plus Water Vapor Longwave, Longwave and
Shortwave Adjusted DCRF and Total Adjusted DCRF. Red dots
represent model feedbacks for the CMIP-3 ensemble computed with
the full, gridded radiative kernel. Blue dots represent the zonally
averaged kernel approximation for the same GCMs. Box plots show
the distribution of the climate prediction.net transient simulations,
where the 1,10,50,90 and 99th percentiles are shown by the boxes and
whiskers. Sign convention is such that positive numbers indicate
positive feedbacks, which reduce outgoing radiation at the top of the
model atmosphere with increasing surface temperature

Table 2 Zonally averaged
kernel feedbacks

CMIP-3 feedback values in
Wm-2 K-1 using the zonal
mean kernel

Columns correspond to Albedo
(A), Water vapor Longwave
(WL), Water vapor Shortwave
(WS), Surface Temperature
(T*), Atmospheric Temperature
(TA), Lapse Rate (L),
Longwave Adjusted Cloud
Feedback (CL) and Shortwave
Adjusted Cloud Feedback (CS)

Model A WL WS T* TA L CL CS

ncar_ccsm3_0 0.29 1.51 0.24 -0.66 -2.62 -0.45 0.23 -0.28

ncar_pcm1 0.29 1.52 0.24 -0.65 -2.56 -0.43 0.44 -0.95

giss_model_e_h 0.07 1.86 0.27 -0.68 -3.11 -1.06 0.62 -0.10

giss_model_e_r 0.14 1.80 0.26 -0.67 -3.02 -0.97 0.57 -0.05

csiro_mk3_0 0.26 1.62 0.25 -0.65 -2.69 -0.61 -0.08 0.52

cccma_cgcm3_1 0.29 2.04 0.29 -0.67 -3.27 -1.04 0.48 0.53

cccma_cgcm3_1 0.39 1.83 0.27 -0.65 -2.98 -0.70 0.44 0.47

cnrm_cm3 0.27 1.81 0.26 -0.66 -2.96 -0.80 0.08 0.64

mpi_echam5 0.26 1.81 0.26 -0.65 -3.17 -0.91 0.35 0.30

iap_fgoals1_0_g 0.32 1.47 0.24 -0.65 -2.41 -0.21 0.45 -0.21

gfdl_cm2_0 0.30 1.80 0.27 -0.66 -2.93 -0.70 0.52 -0.54

gfdl_cm2_1 0.19 2.00 0.29 -0.67 -3.14 -1.02 0.86 -1.01

inmcm3_0 0.29 1.48 0.23 -0.64 -2.47 -0.32 0.51 -0.34

ipsl_cm4 0.25 1.64 0.25 -0.67 -2.86 -0.63 0.00 1.07

miroc3_2_hires 0.30 1.62 0.26 -0.67 -3.21 -0.67 0.25 0.76

miroc3_2_medres 0.26 1.59 0.26 -0.67 -3.26 -0.72 0.20 0.67

mri_cgcm2_3_2a 0.23 1.89 0.29 -0.65 -3.20 -0.64 0.59 0.02

ukmo_hadgem1 0.25 1.51 0.24 -0.65 -2.96 -0.45 0.16 0.65

1226 B. M. Sanderson et al.: Climate feedbacks determined using radiative kernels
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3. Process / Feedback analysis

Sanderson et al (2010)
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CAMcloud
perturbed physics ensemble

Aims:
•Small ensemble of ‘plausible’ models
•Representing systematic uncertainty in cloud feedbacks
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CAMcloud
proposed ensemble

•CAM5 physics
•6 million hours CPU time
•Perturbations to cloud, microphysics and land surface 
parameters
•Stage 1: Monte-Carlo sampling strategy (AMIP & 4XCO2)
•Stage II: Optimal ensemble (RCP)
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Surrogate Models
neural network approach
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CAMcube example
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The curse of dimensionality
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27 parameters, 3 values each

7.62559748 × 1012 simulations
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Surrogate Models
neural network approach
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Surrogate Models
semi-empirical approach
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SCAMcube
a demonstration
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SCAMcube
a demonstration

Sanderson et al (in prep)
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Completed:
•Single variable, single SCAM neuron

•Multivariate emulation (focus on COSP output)
•Multiple SCAM neurons in different climatic regimes

CAMcloud:

•CLM neurons for land model emulation

Distant Future
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CAMcloud
proposed ensemble

1 - Initial ensemble,  AMIP & 4XAMIP w. COSP output
2 - large Semi-empirical surrogate ensemble
3 - Optimize surrogate for each CFMIP member,

determine errors in cloud feedback estimates
4 - Optimize surrogate for observations.
5 - Optimal ensemble (RCP, flux corrected):
•Skill score
•Model diversity (clustering)
•Representative Feedback spread
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Timeline

•April/May 2012 - proposal evaluation
•Summer-Fall 2012 - Initial AMIP ensemble
•Fall-??? - Optimal ensemble available

CAMcloud
proposed ensemble
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