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ChemClim WG Charter 

• The goal of the Chemistry-Climate WG is to 
continue the development of the representation 
of chemistry in the CESM and to further our 
understanding of the interactions between 
chemistry and climate.  

• Scientific motivations include advancing 
knowledge on past, present and future 
atmospheric composition, interactions between 
atmospheric composition and the Earth System, 
stratosphere-troposphere coupling, and impacts 
of global composition and climate on air quality. 
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Participation 

• Colorado State University, Fort Collins, CO 
• Cornell University, Ithaca, NY 
• Jet Propulsion Laboratory, Pasadena, CA 
• Lawrence Livermore National Laboratory, Livermore, CA 
• Massachusetts Institute of Technology, MA 
• NOAA, Boulder, CO 
• Pacific Northwest National Laboratory, Richland, WA 
• University of Colorado, Boulder, CO 
• University of Illinois, Urbana-Champaign, IL 

• Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain 
• University of Leeds, UK 
• University of Oslo, Norway 
• University of Toronto, Canada 
 

United States 

International 
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Chemistry in an Earth System Model 

Emissions Chemical reactions 

Removal processes 

Natural Anthropogenic Radiation 

Clouds 

Biosphere 

Snow/ice 
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Climate and other feedbacks 



Atmosphere Model version 4 

Dynamics 

Physics 

Chemistry 

Coupler 

Lan Land Model 

Lan Ocean Model 

Lan Sea-ice Model 

Radiation 

CAM-chem: chemistry in CESM 

Lamarque et al., GMDD, 2011 
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Atmosphere Model version 4 
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CAM-chem: chemistry in CESM 

Lamarque et al., GMDD, 2011 
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Ozone from the stratosphere: 
1-2x1013 moles per year 

Methane + NMHC emissions 

Ozone + radiation + water = 2 OH 
2-4x1013 moles per year 

CH4 + OH -> products 
NMHC + OH -> products 

> 10x1013 moles per year Tr
op
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ph
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Why do we need extensive chemistry? 

(e.g. isoprene) 
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Shindell et al., Science, 2012 

Climate benefits from methane reductions 

Reference 
CH4 measures 
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OBS-based 

Global modeling of CH4 lifetime in 
IPCC AR5 

Figure courtesy of V. Naik, GFDL, 2012 10 



Ozone from the stratosphere: 
1-2x1013 moles per year 

Methane + NMHC emissions 

Ozone + radiation + water = 2 OH 
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Byproducts 
Ozone 
SOA 

(e.g. isoprene) 
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 Primary: 
 dust 
 soot 
 some organics 
 pollen 
 metals 
 
Secondary: 
 sulfate 
 nitrate 
 ammonium 
 most organics 
 
Mixed: 
 most !! 
 
 

Aerosols 



Radiative Forcing of  
Climate 
 

IPCC, 2007 

Incoming solar ~340 W m-2  

Changes since 1750: 
 
   long-lived gases ~ 3 W m-2 

   ozone ~ 0.4 W m-2 

   aerosols and clouds ~ -1 W m-2  

Forcing by aerosols is 
largest uncertainty 



Not just climate: air quality and mortality 

Fann et al., Risk Analysis, 2011. 

130,000-240,000 
premature deaths per 
year are attributable to 
PM2.5 and ozone 
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Multi-model mean bias 
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Multi-model mean bias 
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CMAQ bias (normalized) 

McKeen et al.,JGR,  2005 



NO3 deposition 
kg/ha/year 

NH4 deposition 
kg/ha/year 

SO4 deposition 
kg/ha/year 
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Wild et al., ACP, 2012 

14 models, including 
CAM-chem 

Source-receptor relationships 



Chemistry-climate coupling: BC 

20 Teng et al., in preparation 



Chemistry-Climate coupling: single forcing 
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Annual average 
 
Units: mm/season 



Summary 

• Chemistry capability in CESM 
• Surface air quality (health & ozone impact on 

agricultural yields) research possible but 
beware of biases 

• Source-receptor relationship: surface ozone 
• Near-field and far-field climate response to 

regional emissions 
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Thank  you. 
Questions? 



How Aerosols Affect Radiative Forcing 
and Climate 

IPCC, 2007 



Climate Models Are Sensitive to Aerosol Forcing 

11 models compared, each with 
different aerosol forcing 
 
 
Trade off between  
 - aerosol forcing 
 - climate sensitivity 
 
 
 
 
 
   Climate sensitivity = ∆T for doubling of CO2 
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Kiehl, 2007 
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