An Ocean Methane Cycle for CESM

Mathew Maltrud COSIM Los Alamos National Laboratory

Scott Elliott (LANL) Matthew Reagan, George Moridis, William Collins (LBNL) Philip Cameron-Smith, Subarna Bhattacharyya, Dan Bergmann (LLNL)

Support from DOE OBER (IMPACTS) and NETL Hydrate program

¤ Ocean Component of IMPACTS

Background methane
 Enhanced sea floor fluxes
 Tracegas module
 Also a DMS module
 Inclusion into CESM release
 Requirements document?
 Leaves ecodynamics unchanged
 How much support?

Why do we care about ocean methane?

 Strong greenhouse gas
 Global contribution (0.4 Tg CH₄/yr) much smaller (< 1%) than terrestrial
 High latitude clathrates and underwater permafrost

Fig. 1. Summertime observations of dissolved CH₄ in the ESAS (21). (A) Positions of oceanographic stations in the eastern Laptev Sea and East Siberian Sea; bathymetry lines for 10, 20, and 50 m depth are shown in blue. (B) Dissolved CH₄ in bottom water. (C) Dissolved CH₄ in surface water. (D) Fluxes of CH₄ venting to the atmosphere over the ESAS.

The Elusive Sea Heifer

Sea floor (shelf depth) temperatures expected to increase

Change in bottom temperature (K) after 100 years from 16 different models (1 realization each) for 1%/year J.-F. Lamarque, GRL 2008

Change in bottom temperature (K) averaged over the Barents Sea (100 to 1000m) from A1B scenarios

Model Characteristics

4 types of methane × Natural background due to biological activity × Background sea floor (seeps, etc) × Atmospheric × Enhanced background (clathrates, permafrost)

Model Mechanism

Each type is standard source/sink

 $\frac{\partial [CH_4]}{\partial t} + \mathbf{u} \cdot \nabla [CH_4] = Source - Removal + Diffusion$

Source (only for background biological in top 250m) $Source = S_0 [O_2^{max} - O_2] / O_2^{max}$ for $O_2 < O_2^{max}$ (only if > 0)

 $S_0 = 10^{-5} \mu M/day$; $O_2^{max} = 300 mmol/m^3$

ズ Consumption (empirical fit to data)

 $Removal = CH_4/\tau \qquad log_{10}\tau = 1 - log_{10}[CH_4]$

Surface flux standard Wanninkhof air-sea transfer with constant 1.75ppb in atmosphere

Model Mechanism

Background sea floor
 Imposed bottom flux
 3x10⁻¹⁰ mole/m²s for
 100m < depth < 1000m

X Atmospheric
X Into undersaturated water

Same consumption relation as biological

Results from "background" cycle

¤0.5 Tg CH₄/yr

Surface concentration (nM) after 30 years

Saturation ratio

2 choices for introducing methane **Applied** bottom flux Includes vertical transport velocity (can be 0) ^I Source profile 10^{-6} mole/m²s Computed by Reagan and Moridis (JGR, 2008) from detailed sub-floor clathrate model

Locations of Methane Clathrate Release

Single grid points300m depth8 locations

Clathrate Results

Methane does not spread very far from source Small amount is released into the atmosphere

Vertically Integrated CH₄ Distribution after 30 Years

Percent of patch methane released into atmosphere

Effects of Clathrate release

O₂ concentration (mmol/m³) at 300m

Possible hypoxia in Sea of Okhotsk and Bering Sea Increase in acidity

change in pH at 300m

-0.01

-0.05

Methane Removal Limitation

Removal time scale very short (days) at high concentration
 Removal assumes no nutrient (or O₂) limitation

 Methanotrophs require Fe, Cu
 What if no methane is removed?
 Worst case scenario
 Other sensitivities?

Can get a wide range of atmospheric releases

Current and Future Work

[™] Code ported to CESM1.0.3 **Example** Fully coupled physics, ocean BGC+methane ¤qx1v6 (60 levels) Ran "background" cycle 30 years Very similar results **¤** Couple with atmospheric chemistry **¤** Bubble rise **Higher resolution** Include with CESM distribution