Model Projection Strategies for Glaciers and Ice Caps and Complete Assessment of Sea Level Rise

Columbia Glacier, 2004

W.T. Pfeffer

W. Tad. Pfeffer and David B. Bahr University of Colorado Boulder, Colorado, USA CESM/Land Ice Working Group 15 February 2012

with thanks to Balaji Rajagopalan, Civil, Environmental, and Architectural Engineering, University of Colorado, USA Christina Hulbe and Scott Waibel, Portland State University, Portland, Oregon, USA

Previous Evaluation of Glacier Loss Rates

Cazenave and Llovel, 2010

Sea level rise (mm year ⁻¹)	1993-2007	2003-2007
Observed	3.3 ± 0.4	2.5 ± 0.4 (Ablain et al. 2009)
Thermal expansion	1.0 ± 0.3	0.25 ± 0.8 (Argo)
	(mean of Levitus et al. 2009 and Ishii & Kimoto 2009 values)	(mean of Willis et al. 2008, Cazenave et al. 2009, and Leuliette & Miller 2009 values)
Ocean mass	2.3 ± 0.5	2.1 ± 0.1
	(observed rate minus thermal	(GRACE with a -2 mm year^{-1} GIA correction,
	expansion)	Cazenave et al. 2007)
Glaciers	1.1 ± 0.25	1.4 ± 0.25
	(based on Kaser et al. 2006 and	(Cogley 2009)
	Meier et al. 2007)	
lotal ice sheets (Greenland & Antarctic)	0.7 ± 0.2	1.0 ± 0.2
	0.4 ± 0.15	0.5 ± 0.15
	0.3 ± 0.15	0.5 ± 0.15
	(compilation of published	(compilation of published results)
	results)	
Land waters	—	-0.2 ± 0.1 (W. Llovel, K. DoMinh, A. Cazenave,
		J.F. Cretaux, M. Becker, unpublished manuscript)
Sum of $(2 + 4 + 5 + 6)$	2.85 ± 0.35	2.45 ± 0.85
Observed rate minus sum	0.45	-0.05

Table 1 Sea level budget for two time spans (1993–2007, 2003–2007)*

*Quoted errors are one standard deviation. The observed sea level rate is GIA corrected (-0.3 mm year⁻¹ removed).

Current Evaluation of Glacier Loss Rates

Current Evaluation of Glacier Loss Rates

Table 1 | Inverted 2003–2010 mass balance rates

Region	Rate (Gt yr ⁻¹)
1. Iceland	-11 ± 2
2. Svalbard	-3 ± 2
3. Franz Josef Land	0 ± 2
4. Novaya Zemlya	-4 ± 2
5. Severnaya Zemlya	-1 ± 2
6. Siberia and Kamchatka	2 ± 10
7. Altai	3 ± 6
8. High Mountain Asia	-4 ± 20
8a. Tianshan	-5 ± 6
8b. Pamirs and Kunlun Shan	-1 ± 5
8c. Himalaya and Karakoram	-5 ± 6
8d. Tibet and Qilian Shan	7 ± 7
9. Caucasus	1 ± 3
10. Alps	-2 ± 3
11. Scandinavia	3 ± 5
12. Alaska	-46 ± 7
Northwest America excl. Alaska	5 ± 8
14. Baffin Island	-33 ± 5
Ellesmere, Axel Heiberg and Devon Islands	-34 ± 6
South America excl. Patagonia	-6 ± 12
17. Patagonia	-23 ± 9
18. New Zealand	2 ± 3
Greenland ice sheet + PGICs	-222 ± 9
20. Antarctica ice sheet + PGICs	-165 ± 72
Total	-536 ± 93
GICs excl. Greenland and Antarctica PGICs	-148 ± 30
Antarctica + Greenland ice sheet and PGICs	-384 ± 71
Total contribution to SLR	$1.48 \pm 0.26 \text{ mm yr}^{-1}$
SLR due to GICs excl. Greenland and Antarctica PGICs	$0.41 \pm 0.08 \text{ mm yr}^{-1}$
SLR due to Antarctica + Greenland ice sheet and PGICs	s 1.06 ± 0.19 mm yr ⁻¹

Jacob et al, 2012

As reported:

 $Glaciers - PGIC: 148 \text{ GT/yr} = 28\% \\ Greenland IS + PGIC: 222 \text{ GT/yr} = 41\% \\ Antarctic IS + PGIC: 165 \text{ GT/yr} = 31\%$

Using estimated fraction of ice sheet Signal coming from peripheral glaciers and ice caps around the ice sheets (PGIC) Glaciers + PGIC: 229 GT/yr = 43% Greenland IS - PGIC: 192 GT/yr = 36% Antarctic IS - PGIC: 111 GT/yr = 21%

Uncertainties are given at the 95% (2s) confidence level.

Current Evaluation of Glacier Loss Rates

Jacob et al, 2012

Region	Rate (Gt yr ⁻¹)
1. Iceland	-11 ± 2
2. Svalbard	-3 ± 2
3. Franz Josef Land	0 ± 2
4. Novaya Zemlya	-4 ± 2
5. Severnaya Zemlya	-1 ± 2
6. Siberia and Kamchatka	2 ± 10
7. Altai	3 ± 6
8. High Mountain Asia	-4 ± 20
8a. Tianshan	-5 ± 6
8b. Pamirs and Kunlun Shan	-1 ± 5
8c. Himalaya and Karakoram	-5 ± 6
8d. Tibet and Qilian Shan	7 ± 7
9. Caucasus	1 ± 3
10. Alps	-2 ± 3
11. Scandinavia	3 ± 5
12. Alaska	-46 ± 7
 Northwest America excl. Alaska 	5 ± 8
14. Baffin Island	-33 ± 5
Ellesmere, Axel Heiberg and Devon Islands	-34 ± 6
16. South America excl. Patagonia	-6 ± 12
17. Patagonia	-23 ± 9
18. New Zealand	2 ± 3
19. Greenland ice sheet + PGICs	-222 ± 9
20. Antarctica ice sheet + PGICs	-165 ± 72
Total	-536 ± 93
GICs excl. Greenland and Antarctica PGICs	-148 ± 30
Antarctica + Greenland ice sheet and PGICs	-384 ± 71
Total contribution to SLR	$1.48 \pm 0.26 \text{ mm yr}^{-1}$
SLR due to GICs excl. Greenland and Antarctica PGICs SLR due to Antarctica + Greenland ice sheet and PGICs	$0.41 \pm 0.08 \text{ mm yr}^{-1}$ $1.06 \pm 0.19 \text{ mm yr}^{-1}$

OLD Inventory as of 2010: Regions included/not included in WGI. Image courtesy V. Radic

Data compilation: G. Cogley

http://glims.org:8080/RGI/randolph.html

Register and get the RGI 1.0

"Zero-order inventory:" glacier outlines only. Combined with DEM this gives Areas, Area Distribution, Area-Elevation Distribution; basic domain variables needed for modeling with minimal upscaling.

Outline example - Penny Ice Cap, Baffin Island, Canada

Net GIC Volume: 0.60 ± 0.07 m SLE (Radic and Hock, 2010); No update yet.

Previous value: $741 \pm 68 \times 10^3 \text{ km}^2$ (Radic and Hock, 2010) (~8% reduction)

All values include peripheral glaciers surrounding Greenland and Antarctic Ice Sheets

Glacier loss rate assessment requires:

1. Inventory: Glacier location, size, area-elevation distribution. Done once with periodic updates as distribution changes.

- 2. Mass Balance Observations: Gain/loss on annual or periodic basis;
- Net volume change (e.g. altimetry, repeat mapping)
- Net mass change (e.g. GRACE)
- Mass balance components (e.g. direct observation of accumulation/ablation)
- Requires regular (ideally annual) updates

Mass balance observations

Sources of GIC uncertainty: very limited number of glaciers in mass balance observational data base

Mass balance observations

Biased representation of glaciers: glaciers large, high-altitude, and tidewater glaciers are strongly *underrepresented* in weak sample

Alaska Mass Balance records: Gulkana and Wolverine glaciers (ca.36 km² combined area, representing Alaska's ca. 79,260 ± 1076 km² (Radic and Hock, 2010) INSTAAR Univ. of Colorado

Projections

Table 3. Projected contribution to sea level by 2100 (cm)

Year	Study	Source (1983 EPA did not separate land ice sources)			
1983	EPA (Hoffman et al., 1983)	Low	Mid-Range Low	Mid-Range High	High
		+56.2	+144.4	+216.6	+345.0

Year	Study	Greenland Ice Sheet	Antarctic Ice Sheets	Glaciers and Ice Caps
1984	NRC/DOE (Committee on Glaciology, 1985)	+10 to +30	-10 to +100	+10 to +30
1990	IPCC First Assessment ¹ (Houghton et al., 1990)	+0.5 to +3.7	-0.8 to 0.0	+2.3 to +10.3
1995	IPCC Second Assessment ² (Houghton et al., 1996)	+6	-1	+16
2001	IPCC Third Assessment ³ (Church et al., 2001)	0 to +7	-7 to +2	+3 to +23
2007	IPCC Fourth Assessment ⁴ (Lemke et al., 2007)	+8 to +17	–14 to –3	+2 to +12

¹ Projection to 2030 using BAU Forcing Scenario; NOTE: 1990 Projection to 2030 only.

² Projection using IS92a Forcing Scenario.

³ Using Forcing Scenario CGCM1 GS; 1990-2100.

⁴ Total land ice contribution 4 to 23 cm; with "scaled-up ice sheet contribution," add ca. 10 to 20 cm.

NOTE: Highest ("fastest burn") emission scenario only for each Assessment chosen for comparison.

Projection types:

1.Explicit numerical model (don't really exist for 300,000+ glaciers)

2.Combined numerical model/power-law upscaling (Radic and Hock, 2010; Marzeion et al, 2011, Slangen et al, 2011)

3.Extrapolation (Meier et al, 2007; Pfeffer et al, 2008; Pfeffer and Balaji, in prep)

4.Relaxation to equilibrium (AAR > AAR₀) (Bahr et al, 2009; Mernild [in review?])

Newest GIC model projections

- None use new inventory
- None consider dynamic response except extrapolation models
- Scaling models can be improved

Reference	Projected SLR at 2100 (m)	Notes
Radic and Hock (2011)	0.09-0.16	A1B scenario
		Average of 10 GCMs
		Calving excluded
Meier et al. (2007)		
Fixed rate	0.08-0.12	Extrapolation
Fixed trend	0.11-0.37	Calving included
Pfeffer et al. (2008)		
Low projection 1	0.17	Limit seeking analysis
Low projection 2	0.24	Calving included
Bahr et al. (2009)		
Present AAR	0.12	Exponential approach to long-term steady-state
Continued AAR decline	0.24	Calving excluded
Slangen et al. (2011)	0.16	A1B scenario
		Calving excluded
Marzeion et al. (2011)		
Excluding glaciers	0.035-0.063	A1B Scenario
peripheral to ice sheets		Average of 10 GCMs
Excluding glaciers peripheral to ice sheets	0.046-0.082	Calving excluded
Gregory Method		
Low	0.12	A1B scenario
Medium	0.15	
High	0.18	
Full Range of projections	0.035-0.37	

INSTRUCTION OF CONTINUE

Projection: Bahr, Meier, and Dyurgerov (GRL 2009):

GIC contribution to sea level 18.0 \pm 3 cm by 2100 with no further warming 37.0 \pm 2 cm by 2100 with further warming

Method uses re-equilibration to equilibrium $AAR_0 = 0.57$

Limitation: Relies upon assumption that AAR = 0.57 is an intrinsic equilibrium value. Observations support this, but a theoretical reason is lacking.

No choice of coefficient c required (factored out in analysis) Hypsometry is variable

Non-deterministic GIC projections

Projection: Radic and Hock, Nature Geoscience 2011 GIC contribution to sea level 12.4 \pm 3.7 cm by 2100

Limitations:

1.No account made for dynamic response 2 Requires abaias of a in $V = aS^{\circ}$

2. Requires choice of c in $V = cS^{\odot}$

3. Hypsometry fixed with AAR = 0.5

Non-deterministic GIC projections

Another non-deterministic scaling model (proposed, Bahr, Pfeffer):

Use Volume-Area scaling: $V = cA^{\gamma}$ Area-Response Time scaling: $T = kA^{\beta}$ AAR scaling: $(1 + \Delta V/V) = (1 + AAR/AAR_0)^{\gamma}$

Need initial GIC distribution and hypsometry (i.e. inventory)

1.GCM provides surface mass balance (SMB) as function of position & time.

2.SMB provides ΔV , Volume-Area scaling provides ΔA .

3.AAR scaling provides new distribution of areas (i.e. new hypsometry), hypsometry + new ELA from GCM provides new distribution of glaciers for next step.

4.Response time scaling allows partial adjustment during time step to reflect dynamics.

Do not model each of 300,000+ glaciers! Generate glacier populations stochastically as needed.

GIC data: GLM-weighted Gogley, Dyurgerov (2010) and Meier et al (2007) compilation

Projected SLR from Rignot data using GLM methods – GIC Data from ~1960 - 2005

Projected SLR from Rignot data using GLM methods – Greenland Data from 1992-2009

Alternate projection by Generalized Linear Model

Rignot data taken at the midpoint of each year (1992-2009)

240

SLE by 2100: 110.0 ± 130 mm

110 Effect of dropping first 2 years of 17 year data series

-20

Projected SLR from Rignot data using GLM methods – Antarctica Data from 1994-2009

Problems with GIC projections:

- 1)Numerical models well developed, and will get better with new inventory, but:
- •At present dependent upon primative AAR model
- •Models SMB only
- •Still strongly dependent on weak observational data

2) Extrapolation and Semi-empirical models may be better for GICs to the extent that GICs may be less influenced by dynamics;

3) But we don't know what role dynamics plays or will play in GIC loss rates. What fraction of global GIC area is drained through marine outlets? (it's 14% in Alaska). How much of present-day GIC loss is dynamic? (in Alaska, 10% comes from Columbia Glacier alone. Will this last?)

global"small" glaciers vs. temperature

annual global small glacier melting (or growth), given here as equivalent annual change in sea-level, follows temperature change of extra-tropical NH (from GISS) global glacier melting appears v. sensitive to warming

glacier data of Dyurgerov (CU), analysis of Lehman & Knutti INSTAAR Univ. of Colorado

W. T. Pfeffer, Columbia Glacier, Alaska

