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Previous Evaluation of Glacier Loss Rates 
Cazenave and Llovel, 2010 
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Current Evaluation of Glacier Loss Rates 

Cogley, 2012 

0.76 mm/y 

1.28 mm/y 
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Current Evaluation of Glacier Loss Rates 
Jacob et al, 2012 

As reported: 
Glaciers – PGIC:         148 GT/yr = 28% 
Greenland IS + PGIC: 222 GT/yr = 41% 
Antarctic IS + PGIC:    165 GT/yr = 31% 

Using estimated fraction of ice sheet 
Signal coming from peripheral glaciers  
and ice caps around the ice sheets (PGIC) 
Glaciers + PGIC:         229 GT/yr = 43% 
Greenland IS - PGIC:  192 GT/yr = 36% 
Antarctic IS - PGIC:     111 GT/yr = 21% 
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Current Evaluation of Glacier Loss Rates 

Jacob et al, 2012 

Cogley, 2012, with Jacob et al overlayed 
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OLD Inventory as of 2010:  Regions included/not included in WGI.    
Image courtesy V. Radic 

Data compilation: G. Cogley 
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Randolph Glacier Inventory 
 

 http://glims.org:8080/RGI/randolph.html 
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Randolph Glacier Inventory 
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Randolph Glacier Inventory 
 

 

Outline example – Penny Ice Cap, Baffin Island, Canada 

“Zero-order inventory:” glacier outlines only. Combined with DEM 
this gives Areas, Area Distribution, Area-Elevation Distribution; basic 
domain variables needed for modeling with minimal upscaling. 
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Randolph Glacier Inventory 
 

 

Previous value: 741± 68 x 103 km2 

 (Radic and Hock, 2010) 
(~8% reduction) 

Net GIC Volume: 
0.60 ± 0.07 m SLE (Radic 
and Hock, 2010); No update 
yet. 

All values include peripheral glaciers surrounding Greenland and Antarctic Ice Sheets 
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Randolph Glacier Inventory 
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Glacier loss rate assessment requires: 
1. Inventory: Glacier location, size, area-elevation distribution.  Done once with 
periodic updates as distribution changes. 

 
2. Mass Balance Observations: Gain/loss on annual or periodic basis; 
• Net volume change (e.g. altimetry, repeat mapping) 
• Net mass change (e.g. GRACE) 
• Mass balance components (e.g. direct observation of accumulation/ablation) 
• Requires regular (ideally annual) updates 
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Sources of GIC uncertainty: very limited number of glaciers in 
mass balance observational data base 

Mass balance observations 
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Biased representation of glaciers: glaciers large, high-altitude, and 
tidewater glaciers are strongly underrepresented in weak sample 
 
Alaska Mass Balance records: Gulkana and Wolverine glaciers 
(ca.36 km2 combined area, representing Alaska’s ca. 79,260 ± 
1076 km2 (Radic and Hock, 2010) 

Mass balance observations 
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Projections 
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Projection types: 
 
1.Explicit numerical model (don’t really exist for 300,000+ glaciers) 

 
2.Combined numerical model/power-law upscaling (Radic and Hock, 
2010; Marzeion et al, 2011, Slangen et al, 2011) 

 
3.Extrapolation (Meier et al, 2007; Pfeffer et al, 2008; Pfeffer and 
Balaji, in prep) 

 
4.Relaxation to equilibrium (AAR > AAR0) (Bahr et al, 2009; Mernild [in 
review?]) 
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Newest GIC model projections 
• None use new inventory 
• None consider dynamic response except extrapolation models 
• Scaling models can be improved 
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Gregory Method 
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Projection: Bahr, Meier, and Dyurgerov (GRL 2009): 
 
GIC contribution to sea level 18.0 ± 3 cm by 2100 with no further warming 
                                                  37.0 ± 2 cm by 2100 with further warming 
 
Method uses re-equilibration to equilibrium AAR0 = 0.57 
 
Limitation: Relies upon assumption that AAR = 0.57 is an intrinsic 
equilibrium value. Observations support this, but a theoretical reason is 
lacking. 
 
No choice of coefficient c required (factored out in analysis) 
Hypsometry is variable 

Non-deterministic GIC projections 
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Projection: Radic and Hock, Nature Geoscience 2011 
GIC contribution to sea level 12.4 ± 3.7 cm by 2100 
 
Limitations: 
1.No account made for dynamic response 
2.Requires choice of c in V = cS 

3.Hypsometry fixed with AAR = 0.5   

Non-deterministic GIC projections 
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Another non-deterministic scaling model (proposed, Bahr, Pfeffer): 
 
Use Volume-Area scaling:              V = cAγ 

        Area-Response Time scaling: T = kAβ 

        AAR scaling:  (1 + ΔV/V) = (1+AAR/AAR0)γ 

 
Need initial GIC distribution and hypsometry (i.e. inventory) 
 
1.GCM provides surface mass balance (SMB) as function of position & 
time. 
2.SMB provides ΔV, Volume-Area scaling provides ΔA. 
3.AAR scaling provides new distribution of areas (i.e. new hypsometry), 
hypsometry + new ELA from GCM provides new distribution of glaciers 
for next step. 
4.Response time scaling allows partial adjustment during time step to 
reflect dynamics. 

 
Do not model each of 300,000+ glaciers! Generate glacier populations 
stochastically as needed. 

 
        

Non-deterministic GIC projections 
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Projected SLR from Rignot data using GLM methods – GIC 
                      Data from ~1960 - 2005 

Extrapolated SLE 
from Glaciers and 
Ice Caps (GIC) 
 
by 2030: 
21.6 ± 2 mm 
 
By 2050: 
47.6 ± 4 mm 
 
 
 

Data 

GIC data: GLM-weighted Gogley, Dyurgerov (2010) and Meier et al (2007) compilation 

Alternate projection by Generalized Linear Model 
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Projected SLR from Rignot data using GLM methods – Greenland 
Data from 1992-2009 

Extrapolated SLE 
from Antarctica 
 
by 2030: 
19.0 ± 5 mm 
 
By 2050: 
52.0 ± 13 mm 
 
By 2100: 
236.0 ± 163 mm 
 
 
 
 

Data 

Alternate projection by Generalized Linear Model 
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Projected SLR from Rignot data using GLM methods – Antarctica 
Data from 1994-2009 

SLE by 2100: 
110.0 ± 130 mm 
 
Effect of dropping 
first 2 years of 17 
year data series  

Alternate projection by Generalized Linear Model 
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Problems with GIC projections: 
 
1)Numerical models well developed, and will get better  
     with new inventory, but: 
•At present dependent upon primative AAR model 
•Models SMB only 
•Still strongly dependent on weak observational data 
 

2) Extrapolation and Semi-empirical models may be better for 
GICs to the extent that GICs may be less influenced by 
dynamics; 
 
3) But we don’t know what role dynamics plays or will play in 
GIC loss rates. What fraction of global GIC area is drained 
through marine outlets? (it’s 14% in Alaska). How much of 
present-day GIC loss is dynamic? (in Alaska, 10% comes from 
Columbia Glacier alone. Will this last?) 
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W. T. Pfeffer, Columbia Glacier, Alaska                                                                                                                                             2006 



INSTAAR Univ. of Colorado 



INSTAAR Univ. of Colorado 

Antarctic Range 

Greenland 
Range 

Compilation figure courtesy Georg Kaser 
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