21ST CENTURY PROJECTIONS OF CH4 AND N2O SOIL-ECOSYSTEM EMISSIONS AND CLIMATE-POLICY EFFECTS

C. Adam Schlosser, Xiang Gao, Eri Saikawa, Andrei Sokolov, Katey Walter, Qianlai Zhuang, Jerry Melillo, and David Kicklighter

The Integrated Global Systems Model

MIT JOINT PROGRAM ON THE SCIENCE AND POLICY OF GLOBAL CHANGE

QUASI-LINKED SIMULATIONS WITH CLM3.5 @2°X2.5°, 1991-2100

UNCONSTRAINED EMISSION						
TCR	Emission	Notes	Abbreviation			
High (95%)	Median (1330 ppm CO2)	+17 regional patterns	HTCR			
Median (50%)		Baseline	MTCR			
Low (5%)		+17 regional patterns	LTCR			
Median (50%)	High(95%) (1660 ppm CO ₂)		MTCR_HEM			
	Low (5%) (970 ppm CO ₂)		MTCR_LEM			

STABILIZATION						
TCR	Emission	Notes	Abbreviation			
High (95%)	550 ppm CO ₂	+17 regional patterns	H450			
Low (5%)	Equivalent	+17 regional patterns	L450			

TOTAL NUMBER OF SIMULATIONS: 17*4 + 7 = 75

Gao et al., 2012

Changes in Methane Emission from Lake Expansion by end of 21st century

Temperature Feedback from Future Lake-Emission of Methane

TEMPERATURE FEEDBACK IS SMALL FOR EITHER UNCONSTRAINED OR STABILIZATION CASE

ADDITIONAL ~10-FOLD INCREASE IN CH_4 EMISSION TREND NEEDED TO PROVIDE SALIENT TEMPERATURE RESPONSE

Gao et al., 2012

DEVELOPMENT OF CLM-CN-N20

- Saikawa et al. (2011, GBC under revision) and JP Report #206 (http://globalchange.mit.edu/pubs/abstract.php?publication_id=2213).
- N₂O emissions flux module within CLM-CN v3.5 includes the DeNitrification-DeComposition (DNDC) Model (Li *et al.*, 1992).
- CLM-CN-N₂O includes pools of N₂O, NO₃⁻, NH₃ and NH4⁺, and treats N inputs from atmospheric deposition, biological N fixation, N losses to NH_4^+ and NO_3^- leaching.
- N₂O emissions via nitrification & denitrification at each timestep.
 - NH₄⁺ is produced via biomass decomposition.
 - Nitrification is temperature and moisture takes place under aerobic conditions. NO₃ is produced from NH₄⁺, and in between, N₂O is also released.
 - Denitrification, a process converting NO₃ into N₂, is also temperature and soil moisture dependent and takes place under anaerobic conditions. The growth rate of denitrifiers, NO₃⁻, nitrite (NO₂⁻), and N₂O, is controlled by the ratio of the soluble C in saturated soil layer to the total soil C as well as the ratio of each denitrifier to the total soil N. The dynamics of the soil C pool are calculated in CLM-CN.

CLM-CN-N2O Model: Contemporary Assessment

Table 1. Regional soil N ₂ O emissions for year 2000 (Tg N ₂ O-N/year)						
Region	NCC	CAS	GOLD			
AFRICA	2.07 (25.2%)	1.99 (22.5%)	1.79 (23.8%)			
ASIA	1.45 (17.7%)	1.54 (17.5%)	1.27 (16.9%)			
CENTRAL AMERICA	0.05 (0.6%)	0.05 (0.6%)	0.05 (0.6%)			
CENTRAL ASIA	1.46 (17.8%)	1.85 (20.9%)	1.46 (19.5%)			
EUROPE	0.35 (4.3%)	0.39 (4.4%)	0.35 (4.6%)			
MIDDLE EAST	0.08 (1.0%)	0.10 (1.1%)	0.08 (1.1%)			
NORTH AMERICA	0.76 (9.3%)	0.86 (9.7%)	0.75 (10.0%)			
OCEANIA	0.30 (3.5%)	0.33 (3.7%)	0.29 (3.8%)			
SOUTH AMERICA	1.69 (20.6%)	1.73 (19.6%)	1.47 (19.6%)			
TOTAL	8.21	8.83	7.50			

- Africa highest natural emission rate. Asia and S. America not far behind.
- Decreases seen to correspond with drought and El Nino years.

Model Assessment: The good and not so good...

Figure 8. Comparison of volumetric water content of the (left) top 2m of soil between observations in the Tapajós National Forest and model and (right) top 10cm between observations in the White Mountain National Forest and model

Figure 11. Comparison of soil N₂O emissions flux between observations (primary forest and secondary forest) and model in Fazenda Fazenda Vitoriá

Saikawa et al., 2011/2012

Changes in Global Soil N₂O Emission through 21st century

Climate Policy vs.

Climate Policy vs. Regional Uncertainty

- In absence of emission constraints, global soil emissions up 50% at 2100. •
- Climate policy works! •
- Uncertainty in regional climate patterns and precipitation frequency show • low sensitivity in light of climate policy response.

Geographic Variations of N₂O emission change

WORK CONTINUES TO ADDRESS SUCH ISSUES AS...

- Adding Methane Dynamics Model (MDM, Zhuang et al., 2004) in CLM. Leveraging off work with CLM-CN-N2O development.
- Bulk/quasi-static geographic representation of saturated areas/wetlands/lakes and the importance of the biogeophysical response.
- Importance of agricultural expansion and fertilization... adding crop module in CLM-CN based on CliCrop (Fant et al., 2012) and CROPWAT formalisms.
- Just how important are the combined natural CH4 and N2O emissions responses?