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Motivations 

 Gravity wave parameterization is one of the leading model uncertainties 
(e.g., QBO, cold-pole problem). 
 

 The high-resolution modeling that resolves gravity waves can improve the 
models.   
 

 This presentation introduces  
 Validations of gravity waves resolved in ECWMF-T799 with observations  
 Capability of ECMWF-T799:  
   Gravity wave variations during the 2009 stratospheric sudden warming 
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The high-resolution WACCM simulations 



ECMWF-T799 and Analysis Method 

The European Centre for Medium-Range Weather Forecasts (ECMWF) 
T799 version 

 The global 4D data assimilation 

 Horizontal resolution ~25 km and 91 vertical levels up to 0.01 hPa (~80 
km). Vertical resolution is ~400 m in the troposphere and ~1-2 km in the 
stratosphere 

 Gravity wave with horizontal wavelength longer than ~100 km and 
vertical wavelength longer than ~4-6 km can be resolved in ECMWF-
T799 [Wu and Eckermann, 2008] 

 Gravity waves (u’, v’, w’, p’, T’) are extracted using wavelet analysis, and 
separated into different spectral bands (100-200, 200-400, 400-800, 800-
1600, 1600-2400 km).  



Validations 

1 Comparing the versions of ECMWF T799 and T1279  

2 Ground-based lidar observations (Seasonal variations) 

3 COSMIC/GPS observations (Seasonal variations) 

4 COSMIC/GPS observations (Short-term variations) 
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Comparison between T799  and T1279 
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T799 
Δh = ~25 km 

T1279 
Δh = ~16 km 

These versions of ECMWF data are provided by Peter Bechtold (ECMWF)  

Gravity waves in T799 and T1279 are similar 



Validations of Seasonal Variations 
ECMWF-T799 vs. Lidar Observations 
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Validations of Seasonal Variations 
ECMWF-T799 vs. Lidar Observations 

 Lidar GW-Ep at RO exhibits the clear seasonal variations with a maximum 
in winter and a minimum in summer, which is consistent with ECWMF 

 GW-Ep at SP from both lidar and ECMWF shows flat seasonal variations. 7 

GW-Ep at RO [Rothera (67.5°S, 68°W)]  SP [the South Pole (90°S)] 

[Yamashita et al., 2010] 

10 hPa 



Validations of Seasonal Variations 
ECMWF-T799 vs. Satellite Observation  

 Climatology of GW-Ep in NH and SH is well compared with 
CHAMP/GPS observations. 

 These results indicate that ECMWF-T799 contains the important 
gravity wave sources in the polar region.  8 

ECMWF-T799 
CHAMP/GPS observations 

[Hei et al., 2008] 

2001   2002      2003     2004     2005 



Short-term Variations 
ECMWF-T799 vs. COSMIC/GPS observations 

 Daily variations of GW-Ep in ECMWF-T799 are comparable with 
COSMIC/GPS GW-Ep during the 2009 SSW. 

These comparisons demonstrate the capability of ECMWF-
T799 resolving gravity waves. 9 



 
Case Study : The 2009 SSW 
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Stratospheric Sudden Warming in 2009 
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Peak SSW at 10 hPa  
 = Jan 23-24 
 
Wind Reversal at 1 hPa 
 = Jan 21 

Wind Reversal @1 hPa Wind Reversal @10 hPa  (Peak SSW) 

Spatial, Temporal , 
Spectral dependence 

of gravity waves 



Spatial Variations of Gravity Waves 
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Temporal Variations of Gravity Waves 

 Enhancements of GW-Ep correspond with the growth of planetary 
wave 1 and wave 2. 

 Downward progressions of gravity wave enhancements are captured.   13 



Spectral Dependence of Gravity Wave Variations 

 Two enhancements of GW-
Ep are seen in all wavelength 
bands.  

 GW-Ep in 400-800 km band 
is dominated.  
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Conclusions 

 

 Gravity waves resolved in ECMWF-
T799 are validated with satellite and 
ground-based lidar observations. 

 During the 2009 SSW, significant 
gravity wave variations are simulated 
by ECMWF, indicating the importance 
of the high-resolution modeling. 
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Example of Gravity Wave Analysis Method 
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 Total Perturbation Energy Flux (FE) is conserved without wave dissipation 

 

 

'''''' wvVwuUwpFE ρρ ++= [Hines and Reddy, 1967; Lidzen, 
1990] 
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Validations of ECMWF-T799 
Analysis vs. Forecast Versions 

 ECWMF-T799 analysis and forecast versions (12, 24,48, 240 hours) 
are comparable, indicating no significant influences on gravity 
waves by assimilation process.  17 

GW-Ep at Rothera in Antarctica 



Motivations 

 Gravity wave parameterization is one of the leading model uncertainty 
(QBO, cold-pole problem). 

 The high-resolution that can resolve gravity waves will solve this problem.    18 

  [Plumb, 2002] 
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