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Berkeley-ISICLES (BISICLES) 

 DOE ISICLES-funded project to develop a scalable adaptive mesh 

refinement (AMR) ice sheet model/dycore 

 Local refinement of computational mesh to improve accuracy 

 Use Chombo AMR framework to support block-structured AMR 

 Support for AMR discretizations 

 Scalable solvers 

 Developed at LBNL 

 DOE ASCR supported (FASTMath) 

 Interface to CISM (and CESM) as an  

      alternate dycore 

 Collaboration with LANL and Bristol (U.K.) 

 

 



Why is this useful? (another BISICLE for another fish?) 

 Ice sheets -- Localized regions where 

high resolution needed to accurately 

resolve ice-sheet dynamics (500 m or 

better at grounding lines) 

 Antarctica is really big – too big to 

resolve at that level of resolution. 

 Large regions where such fine 

resolution is unnecessary (e.g. East 

Antarctica) 

 Well-suited for adaptive mesh 

refinement (AMR) 

 Problems still large: need good 

parallel efficiency 

 Dominated by nonlinear coupled 

elliptic system for ice velocity solve: 

good linear and nonlinear solvers  

 

 

 

 

[Rignot & Thomas, 2002]  



“L1L2” Model (Schoof and Hindmarsh, 2010). 

 Uses asymptotic structure of full Stokes system to construct a 

higher-order approximation  

 Expansion in e -- ratio of length scales 
ℎ

𝑥
 

 Computing velocity to 𝑂(𝜀2) only requires τ to 𝑂(𝜀) 

 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. (can reconstruct 3d) 

 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 

 



Discretizations 

 Baseline model is the one used in  

Glimmer-CISM: 

 Logically-rectangular grid, obtained 

from a time-dependent uniform 

mapping. 

 2D equation for ice thickness, coupled with 

2D steady elliptic equation for the horizontal 

velocity components. The vertical velocity is 

obtained from the assumption of 

incompressibility. 

 Advection-diffusion equation for temperature. 
 

 Use of Finite-volume discretizations (vs. Finite-difference discretizations) 

simplifies implementation of local refinement. 

 Software implementation based on constructing and extending existing solvers 

using the Chombo libraries. 
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BISICLES Results - MISMIP3D 

 Begin with steady-state (equilibrium) 

grounding line. 

 Add Gaussian slippery spot perturbation 

at center of grounding line 

 Ice velocity increases, GL advances. 

 After 100 years, remove perturbation. 

 Grounding line should return to original 

steady state. 

 Figures show AMR calculation:  

 ∆𝑥0= 6.5𝑘𝑚 base mesh,  

 5 levels of refinement 

 Finest mesh ∆𝑥4= 0.195𝑘𝑚. 

 t = 0, 1, 50, 101, 120, 200 yr 

 Boxes show patches of refined mesh. 

 

Experiment P75R:   
(Pattyn et al (2011) 



MISMIP3D (cont) 

 Plot shows grounding line 

position 𝑥𝐺𝐿 at 𝑦 = 50𝑘𝑚 vs. 

time for different spatial 

resolutions. 

 

 ∆𝒙 = 𝟎. 𝟏𝟗𝟓𝒌𝒎 → 𝟔. 𝟐𝟓 𝒌𝒎 

 

 Appears to require finer than 

1 km mesh to resolve 

dynamics 

 

 Converges as O(∆𝑥)            
(as expected) 



BISICLES Results – Pine Island Glacier  

 Cornford, et al, JCP (2011, submitted) 

 PIG configuration from LeBrocq: 
 Bathymetry:  combined Timmerman (2010), Jenkins (2010), Nitsche (2007) 

 AGASEA thickness 

 Isothermal ice, A=4.0× 10−17 𝑃𝑎−
1

3 𝑚−1/3𝑎  

 Basal friction chosen to roughly agree with Joughin (2010) velocities 

 Specify melt rate under shelf: 

 𝑀𝑠 =  

0                      𝐻 < 50𝑚
1

9
𝐻 − 50          50 ≤ 𝐻 ≤ 500𝑚 

                     50                       𝐻 > 500 𝑚                       

 m/a 

 Constant surface flux = 0.3 m/a 

 Evolve problem – refined meshes follow the grounding line. 

 Calving model and marine boundary condition at calving front 

 



PIG (cont) 

4 km uniform mesh 1 km finest resolution  



PIG, cont 

1 km finest resolution  250 m finest resolution  



PIG, cont 

Coloring is ice velocity, 𝛤𝑔𝑙 is the grounding line. Superscripts denote number 

of refinements. Note resolution-dependence of 𝛤𝑔𝑙 

Initial Condition Solution after 30 years 



Continental-scale: Antarctica 

• Ice2sea geometry: LeBrocq, Timmerman, Jenkins, Nitsche 

• Temperature field from Pattyn and Gladstone 



Antarctica, cont   

• Refinement based on Laplacian(velocity), grounding lines 

• 5 km base mesh with 3 levels of refinement  

• base level (5 km): 409,600 cells (100% of domain) 

• level 1 (2.5 km):  370,112 cells (22.5% of domain) 

• Level 2 (1.25 km): 955,072 cells (14.6% of domain) 

• Level 3 (625 m):  2,065,536 cells (7.88% of domain) 

 

 

 

 

 

 

 

 



Parallel scaling, Antarctica benchmark 

(Preliminary scaling result – includes I/O and serialized initialization) 



BISICLES – Next steps 

 More work with linear and nonlinear velocity solves. 

 PETSc/AMG linear solvers look promising (in progress) 

 Semi-implicit time-discretization for stability, accuracy. 

 Finish coupling with existing Glimmer-CISM code  and CESM 

 Full-Stokes for grounding lines? 

 Embedded-boundary discretizations for GL’s and margins. 

 Performance/scaling optimization and autotuning.  

 Refinement in time? 


