Resolving Grounding Line Dynamics . using the BISICLES Adaptive Ice Sheet Model

Dan Martin
Lawrence Berkeley National Laboratory

February 16, 2012

BTsTeLes

第保 University of
2 ${ }^{20}$ BRISTOL

Berkeley-ISICLES (BISICLES)

- DOE ISICLES-funded project to develop a scalable adaptive mesh refinement (AMR) ice sheet model/dycore
- Local refinement of computational mesh to improve accuracy
- Use Chombo AMR framework to support block-structured AMR
- Support for AMR discretizations
- Scalable solvers
- Developed at LBNL
- DOE ASCR supported (FASTMath)
- Interface to CISM (and CESM) as an alternate dycore
- Collaboration with LANL and Bristol (U.K.)

Why is this useful? (another BIIICLE for another fish?)

- Ice sheets -- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)
- Antarctica is really big - too big to resolve at that level of resolution.
- Large regions where such fine resolution is unnecessary (e.g. East Antarctica)
- Well-suited for adaptive mesh refinement (AMR)
- Problems still large: need good parallel efficiency
- Dominated by nonlinear coupled elliptic system for ice velocity solve: good linear and nonlinear solvers
[Rignot \& Thomas, 2002]
BTsTeLes

- Uses asymptotic structure of full Stokes system to construct a higher-order approximation
- Expansion in ε-- ratio of length scales $\frac{[h]}{[x]}$
- Computing velocity to $O\left(\varepsilon^{2}\right)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
- Similar formal accuracy to Blatter-Pattyn $O\left(\varepsilon^{2}\right)$
- Recovers proper fast- and slow-sliding limits:
- SIA $\left(1 \ll \lambda \leq \varepsilon^{-1 / n}\right)$-- accurate to $O\left(\varepsilon^{2} \lambda^{n-2}\right)$
- SSA $(\varepsilon \leq \lambda \leq 1)$ - accurate to $O\left(\varepsilon^{2}\right)$

Discretizations

- Baseline model is the one used in Glimmer-CISM:
- Logically-rectangular grid, obtained from a time-dependent uniform
 mapping.
- 2D equation for ice thickness, coupled with 2D steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
- Advection-diffusion equation for temperature.

$$
\begin{gathered}
\frac{\partial H}{\partial t}=b-\nabla \cdot H \overline{\mathbf{u}} \\
\frac{\partial T}{\partial t}=\frac{k}{\rho c} \nabla^{2} T-\mathbf{u} \cdot \nabla T+\frac{\Phi}{\rho c}-w \frac{\partial T}{\partial z}
\end{gathered}
$$

- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

BISICLES Results - MISMIP3D

Experiment P75R:
(Pattyn et al (2011)

- Begin with steady-state (equilibrium) grounding line.
- Add Gaussian slippery spot perturbation at center of grounding line
- Ice velocity increases, GL advances.
- After 100 years, remove perturbation.
- Grounding line should return to original steady state.
- Figures show AMR calculation:
- $\Delta x_{0}=6.5 \mathrm{~km}$ base mesh,
- 5 levels of refinement
- Finest mesh $\Delta x_{4}=0.195 \mathrm{~km}$.
- $\mathrm{t}=0,1,50,101,120,200 \mathrm{yr}$
- Boxes show patches of refined mesh.

MISMIP3D (cont)

- Plot shows grounding line position $x_{G L}$ at $y=50 \mathrm{~km}$ vs. time for different spatial resolutions.

ㅁ $\Delta x=0.195 \mathrm{~km} \rightarrow 6.25 \mathrm{~km}$

- Appears to require finer than 1 km mesh to resolve dynamics
- Converges as $\mathrm{O}(\Delta x)$ (as expected)

紫寀 UR Univerity of
BRISTOL

BISICLES Results - Pine Island Glacier

- Cornford, et al, JCP (2011, submitted)
- PIG configuration from LeBrocq:
- Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
- AGASEA thickness
- Isothermal ice, $A=4.0 \times 10^{-17} \mathrm{~Pa}^{-\frac{1}{3}} \mathrm{~m}^{-1 / 3} a$
- Basal friction chosen to roughly agree with Joughin (2010) velocities
- Specify melt rate under shelf:
- $M_{s}=\{$

$$
\begin{gather*}
H<50 \mathrm{~m} \\
50 \leq H \leq 500 \mathrm{~m} \\
H>500 \mathrm{~m}
\end{gather*}
$$

- Constant surface flux $=0.3 \mathrm{~m} / \mathrm{a}$
- Evolve problem - refined meshes follow the grounding line.
- Calving model and marine boundary condition at calving front

我 $1 / 2$ University of
\&2

PIG (cont)

BTsTeLes
EERKELEYLAB | III
Los Alamos
NATIONAL LABORATORY
 2 2 BRISTOL

PIG, cont

Bisteres
EERKELEYLAB | III
Los Alamos
NATIONAL LABORATORY
造 University of 2 2 BRISTOL

PIG, cont

Coloring is ice velocity, $\Gamma_{g l}$ is the grounding line. Superscripts denote number of refinements. Note resolution-dependence of $\Gamma_{g l}$

BTSTMETS

Continental-scale: Antarctica

- Ice2sea geometry: LeBrocq, Timmerman, Jenkins, Nitsche - Temperature field from Pattyn and Gladstone
 EST. 1943

Antarctica, cont

- Refinement based on Laplacian(velocity), grounding lines
- 5 km base mesh with 3 levels of refinement
- base level (5 km): 409,600 cells (100% of domain)
- level 1 (2.5 km): 370,112 cells (22.5% of domain)
- Level $2(1.25 \mathrm{~km})$: 955,072 cells (14.6% of domain)
- Level 3 (625 m): 2,065,536 cells (7.88% of domain)

Mesh Resolution

Parallel scaling, Antarctica benchmark

(Preliminary scaling result - includes I/O and serialized initialization)

BTsTMES

BISICLES - Next steps

- More work with linear and nonlinear velocity solves.
- PETSc/AMG linear solvers look promising (in progress)
- Semi-implicit time-discretization for stability, accuracy.
- Finish coupling with existing Glimmer-CISM code and CESM
- Full-Stokes for grounding lines?
- Embedded-boundary discretizations for GL's and margins.
- Performance/scaling optimization and autotuning.
- Refinement in time?

