
A preconditioning technique based on two-level domain decomposition methods

A preconditioning technique based on two-level
domain decomposition methods

Duk-Soon Oh

Courant Institute of Mathematical Sciences
New York University

Feburary 16, 2012



A preconditioning technique based on two-level domain decomposition methods

Introduction

Conventional methods for large systems of algebraic equations
arising from FDM and FEM

Direct methods - expensive to use
Iterative methods - may need many iteration counts due to a
large condition number

Domain decomposition methods

Provide good preconditioners
Combination of direct methods and iterative methods
Easy to parallelize
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Idea of Domain Decomposition Methods

Decompose the domain Ω into overlapping or non-overlapping
subdomains.

Assign one or several subdomains to each processor of parallel
machine.

In each iteration:

In each subdomain, solve small local subproblems.

In addition, solve one small global problem (two-level
methods).
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Motivation

One-level vs Two-level

the number of subdomains may effect the efficiency for
one-level methods.

the performance of two-level methods only depends on the
size of local subproblems.

in some cases, e.g., solving nonlinear problems, we can reuse
the coarse solver.
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Motivation

Conventional two-level methods

we usually need additional information, e.g., coarse coordinate
information.

we need quite regular meshes.

it is hard to apply for irregular subdomains.
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Alternative Approach

Generalized Dryja, Smith, Widlund (GDSW) coarse space
technique

this technique is based on energy minimizing discrete
harmonic extensions.

it has been applied to many applications

almost incompressible elasticity (Dohrmann, Widlund)
Reissner-Mindlin plates (Lee)
Raviart-Thomas vector fields (Oh)
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Alternative Approach

Advantage

the method can be implemented in an algebraic manner - we
do not need any coarse discretization.

it works well for irregular subdomains and unstructured
meshes.

it has well-established theoretical results, e.g., upper bounds
of condition number.
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Discrete Harmonic Extension

A function u(i) defined on Ωi is said to be discrete harmonic on Ωi

if
A

(i)
II u

(i)
I + A

(i)
IΓ u

(i)
Γ = 0.

u(i) is completely defined by u
(i)
Γ .

The discrete harmonic extension has the minimal energy property.

a(u,u) = min
v|Γ=uΓ

a(v, v)
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Coarse Component
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Coarse Component

R0 : restriction to coarse space

We choose one coarse edge or vertex and give 1 to the nodes
on the edge or vertex.
We assign 0 to other nodes on the interface.
We use the discrete harmonic extension for interior parts.

A0 : R0AR
T
0

We note that this coarse component can be implemented in an
algebraic manner. We do not need any coarse discretizations.
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Additive Schwarz Perconditioner

Additive Schwarz Method

P−1 = RT
0 A−1

0 R0 +
N∑
i=1

RT
i A−1

i Ri

A0 : coarse matrix (restriction to the coarse space)

Ai : local matrix (restriction to extended subdomain Ω′i )

R0 : restriction to coarse space

Ri : restriction to extended subdomain Ω′i
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Restricted Additive Schwarz Perconditioner

Restricted Additive Schwarz Method

P−1 = RT
0 A−1

0 R0 +
N∑
i=1

R̃T
i A−1

i Ri

A0 : coarse matrix (restriction to the coarse space)

Ai : local matrix (restriction to extended subdomain Ω′i )

R0 : restriction to coarse space

Ri : restriction to extended subdomain Ω′i

R̃i : restriction to subdomain Ωi
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Implementation

We implemented the algorithm with Trilinos Ifpack interface.

Ifpack supports one-level (restricted) additive schwarz
preconditioners.

We only need an Epetra RowMatrix and an Epetra Map to
construct the coarse component.
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Conclusion

We can construct an algebraic, parallel and scalable
preconditioner with our new coarse space technique.

We are applying this preconditioner to ice-sheet problems.
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Numerical Experiments

1024 × 1024 2D Laplace equation
1 subdomain per each processor, preconditioned GMRES
local solver : Amesos KLU

Table: total elapsed time in second

# of processors 2 4 8 16 32

one-level method 132.14 69.24 49.47 32.71 24.58

two-level method 175.71 85.39 44.38 23.17 14.39

Table: iteration counts

# of processors 2 4 8 16 32

one-level method 76 93 155 162 183

two-level method 48 62 76 64 67


