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Introduction

m Conventional methods for large systems of algebraic equations
arising from FDM and FEM
m Direct methods - expensive to use
m lterative methods - may need many iteration counts due to a
large condition number

m Domain decomposition methods

m Provide good preconditioners
m Combination of direct methods and iterative methods
m Easy to parallelize
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|ldea of Domain Decomposition Methods

m Decompose the domain €2 into overlapping or non-overlapping
subdomains.

m Assign one or several subdomains to each processor of parallel
machine.
In each iteration:
m In each subdomain, solve small local subproblems.

m In addition, solve one small global problem (two-level
methods).
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Motivation

One-level vs Two-level

m the number of subdomains may effect the efficiency for
one-level methods.

m the performance of two-level methods only depends on the
size of local subproblems.

m in some cases, e.g., solving nonlinear problems, we can reuse
the coarse solver.
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Motivation

Conventional two-level methods

m we usually need additional information, e.g., coarse coordinate
information.

m we need quite regular meshes.

m it is hard to apply for irregular subdomains.
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Alternative Approach

Generalized Dryja, Smith, Widlund (GDSW) coarse space
technique

m this technique is based on energy minimizing discrete
harmonic extensions.
m it has been applied to many applications

m almost incompressible elasticity (Dohrmann, Widlund)
m Reissner-Mindlin plates (Lee)
m Raviart-Thomas vector fields (Oh)
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Alternative Approach

Advantage

m the method can be implemented in an algebraic manner - we
do not need any coarse discretization.

m it works well for irregular subdomains and unstructured
meshes.

m it has well-established theoretical results, e.g., upper bounds
of condition number.
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Discrete Harmonic Extension

A function u() defined on Q; is said to be discrete harmonic on €;
if

AP 4 ADUD g

u) is completely defined by uﬁi).

The discrete harmonic extension has the minimal energy property.

a(u,u) = v\m—”l], a(v,v)
r=ur
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Coarse Component

Interior(l)
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Interface(r) : vertex + Edge
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Coarse Component

m Ry : restriction to coarse space

m We choose one coarse edge or vertex and give 1 to the nodes
on the edge or vertex.

m We assign 0 to other nodes on the interface.

m We use the discrete harmonic extension for interior parts.

] Ao . ROAR(;[_

We note that this coarse component can be implemented in an
algebraic manner. We do not need any coarse discretizations.
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Additive Schwarz Perconditioner

Additive Schwarz Method

N
P =RjA 'R+ > RTAT'R;
i=1

m Ap : coarse matrix (restriction to the coarse space)

m A; : local matrix (restriction to extended subdomain Q)
m Ry : restriction to coarse space
]

R; : restriction to extended subdomain 2’
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Restricted Additive Schwarz Perconditioner

Restricted Additive Schwarz Method

N
Pt =RJA'Ro+ > RTA'R
i=1

Ao : coarse matrix (restriction to the coarse space)
Aj : local matrix (restriction to extended subdomain )

Ry : restriction to coarse space

R; : restriction to extended subdomain Qj-

R; : restriction to subdomain Q;



A preconditioning technique based on two-level domain decomposition methods

Implementation

m We implemented the algorithm with Trilinos Ifpack interface.
m Ifpack supports one-level (restricted) additive schwarz
preconditioners.

m We only need an Epetra RowMatrix and an Epetra Map to
construct the coarse component.
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Conclusion

m We can construct an algebraic, parallel and scalable
preconditioner with our new coarse space technique.

m We are applying this preconditioner to ice-sheet problems.
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Numerical Experiments

1024 x 1024 2D Laplace equation
1 subdomain per each processor, preconditioned GMRES
local solver : Amesos KLU

Table: total elapsed time in second

’ # of processors ‘ 2 ‘ 4 ‘ 8 ‘ 16 \ 32 ‘
one-level method | 132.14 | 69.24 | 49.47 | 32.71 | 24.58
two-level method | 175.71 | 85.39 | 44.38 | 23.17 | 14.39

Table: iteration counts
] # of processors \ 2 \ 4 \ 8 \ 16 \ 32 ‘
one-level method | 76 | 93 | 155 | 162 | 183
two-level method | 48 | 62 | 76 | 64 | 67




