A Simple Inverse Method for Deducing the Large-Scale Distribution of Basal Sliding Coefficients beneath the Antarctic Ice Sheet

> David Pollard Pennsylvania State University

Robert DeConto University of Massachusetts

Land Ice Working Group/CESM meeting NCAR, February 15-17 2012

CReSI

Outline

- 1. Motivation, previous work
- 2. Simple inverse method # 1
- 3. Simple inverse method # 2 (with basal temperature)
- 4. Comparison with previous work
- 5. Summary

Motivation

 $u_b = C(x,y) f(T_b) \tau_b^2$

 Primary cause of O(500 m) elevation errors in Antarctic continental paleo ice-sheet models?

where

- u_b = basal ice velocity,
- τ_b = basal shear stress ,
- T_b = basal temperature,
- $f(T_b) = 0$ if bed is frozen,
 - 1 if bed is at melt point

Observed surface elevation

crude C(x,y) map: sediment if rebounded bed is below sea level, hard bedrock if above

Model minus observed surface elevation

Typical surface elevation or thickness errors In continental (paleo) Antarctic models

Previous basal inversions for Antarctica

Ice Stream E (MacAyeal, 1992):

(Joughin et al., 2009; Morlinghem et al., 2010):

Pine Island and Thwaites Glaciers

Basal stress, Pine Island GI: Morlighem et al., GRL, 2010

PISM basal drag coefficient (Pa s m⁻¹). Lingle et al., JPL PARCA meeting, 2007

ISSM basal drag coefficient (ms^{1/2}). Larour et al., JPL PARCA meeting, 2009

The Inversion Method

- Very simple procedure to deduce basal sliding coefficients C(x,y),
- fitting to observed ice geometry (surface elevation).
- Run model forward, and every 5 kyrs adjust C locally depending on current ice surface elevation mismatch with observed

Details:

- Every 5000 years, decrease (stiffen) C(x,y) if the local ice surface is too low, or increase (soften) C(x,y) if local surface is too high:
 - $C_{new} = C \, 10^{\Delta z / 500}$ where $\Delta z = \text{model} - \text{observed surface elevation (m)}$
 - Constrain C to remain in range 10⁻²⁰ to 10⁻⁵ m a⁻¹ Pa⁻²
- Run model forward for ~200,000 years until convergence

Ignore $\partial/\partial x$, $\partial/\partial y$'s....as if effects are local

Ignore all other potentially canceling model errors ! (e.g. internal deformation $\partial u/\partial z$)

Ignore GIA - assume modern ice sheet is in equilibrium

Spinup in a 400,000 year run. The method converges!

Model surface elevations minus observed

Results of Method #1 (no basal temperature effect)

Results of Method # 2 (with basal temperature effect)

Different grid resolutions: results are ~unchanged

Comparison with previous basal inversions

- Previous studies have fitted model to observed velocities, with ice geometry fixed from observations.
- The method here fits model to observed ice geometry, with no constraints on velocities.
- In principle, this should yield ~same results for C(x,y), due to unique relationship between surface mass balance, ice thickness and balance velocity.

PISM basal drag coefficient (Pa s m⁻¹). Lingle et al., JPL PARCA meeting, 2007

Pine Island and Thwaites Glaciers:

Summary

Simple inverse method "works":

(a) converges, (b) reduces surface elevation errors, (c) deduces reasonable C(x,y) patterns.

Independent of ice model. Just needs:

(a) run for ~200,000 years, (b) bedrock parameter(s) that make u_b increase or decrease.

- BUT some of the deduced C(x,y) must be due to other model errors, not real bed conditions.
 Lesser of two evils: cancelling errors vs. O(500m) biases in surface elevation
- Next steps:
 - Combine with large-ensemble techniques? (Stone et al., The Cryo. 2010; Tarasov et al., EPSL, 2011)
 - Apply to last deglaciation (Briggs et al., ISAES abs., 2011.; Whitehouse et al., QSR, 2012)