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Motivation

Ice sheet geometry is sensitive to basal boundary conditions,

mainly deformable sediment (C=10-°) vs. hard bedrock (C=10-10)

u, = C(x,y) f(Ty) 5,2

Primary cause of O(500 m) elevation errors in Antarctic

continental paleo ice-sheet models?

where
u, = basal ice velocity,
5, = basal shear stress ,
T, = basal temperature,
f(T,) = 0 if bed is frozen,
1 if bed is at melt point

Observed surface elevation
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crude C(x,y) map:
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Typical surface elevation or thickness errors
In continental (paleo) Antarctic models
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Figure 4. Comparison between observed and modeled surface elevation for the present-day
geometry of the grounded ice. (a) Elevation contours: Continuous lines represent observed con-
figuration and dotted lines represent modeled configuration. Thick lines represent grounding
lines, thin lines represent isolines for every 1000 m intervals. (b) Altitude difference map: in

rey the modeled surface is below the observed one (negative isolines). Tsolines are for -1000,-500
%thick line),-250,-100,0,100,250,500 (thick line) and 1000 m. Horizontal scales are as in Figure 3.
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® Previous work has deduced basal-stress or sliding-coefficient maps using
control theory (Lagrangian multiplier/adjoint) methods,

Itting modeled vs. observed velocities, with ice geometry
ickness, elevation) fixed from observations.

) Regional: MacAyeal,1992; Vieli and Payne, 2003; Joughin et al. 2009; Morlighem et al., 2010.

Continental: 1ssm, Larour et al., ISSM, issm.jpl.nasa.gov; Bueler et al., PISM, www.pism-docs.org.
Also Price et al. (PNAS, 2011), Greenland, local method.

Ice Stream E Pine Island and Thwaites Glaciers

(MacAyeal, 1992): (Joughin et al., 2009; Morlinghem et al., 2010):
c PISM (U. Alaska): ISSM (JPL):
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Basal stress, Pine Isl;and and ; .
Thwaites Glaciers. Joughin et al., Bas"?" stress, Pine Island Gl: PISM basal drag ISSMbasal drag
J. Glac., 2009 Morlighem et al., GRL, 2010 .. ) coefficient (ms*2). Larour
coefficient (Pa s m1).

etal., JPL PARCA
meeting, 2009

(Pa s/m) Lingle et al., JPL PARCA
meeting, 2007

Basal drag coefficient, Ice Stream

E. Macayeal JGR, 1992.




<itting to observed ice geometry (surface elevation). >

Very simple procedure to deduce basal sliding coefficients C(x,y),

Run model forward, and every 5 kyrs adjust C locally depending on current ice surface elevation
mismatch with observed

Details:

higher

Every 5000 years, decrease (stiffen) C(x,y) if the local ice
surface is too low, or increase (soften) C(x,y) if local surface

is too high:

- C,,, = C 1042/500

where 4z = model — observed surface elevation (m) ; ! ice
= Constrain C to remain in range 1020 to 10° m a'! Pa2 W\
slipperier
Cl ct rock

Run model forward for ~200,000 years until convergence

Ignore o/ox, oloy’s....as if effects are local

Ignore all other potentially canceling model errors ! (e.g. internal deformation Au/cz)

Ignore GIA - assume modern ice sheet is in equilibrium




Spinup in a 400,000 year run. The method converges!
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Results of Method # 1 (no basal temperature effect)

two-valued C

inverse method #1
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temperature on sliding

Allow minimum C =1020,
So inverse procedure can
find “frozen” (stuck) areas

But when run full model with
C(x,y) prescribed, frozen
areas differ from inverse-
deduced stuck areas.

Large surface elevation
errors re-occur.
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A,

C(x.y)

Results of Method # 2 (with basal temperature effect)

inverse method # 2 2nd method + s.a.

full model, prescribed C (2" + s.a.)
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u, = C(xy) (T, s.a) g2
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Different grid resolutions: results are ~unchanged

40 km (2 +s.a.) 20 km (2 +s.a.) 10 km nested (2 +s.a.)
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® Previous studies have fitted model to observed velocities, with ice geometry fixed from observations.
® The method here fits model to observed ice geometry, with no constraints on velocities.

® In principle, this should yield ~same results for C(x,y), due to unique relationship between surface
mass balance, ice thickness and balance velocity.
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.
A~
o Py

-5.0
-5.5
-6.0
-6.5
-7.0
-1.5
-8.0
-9.0
-10.0
WA\ i -20.0
basal siding coe¥ N " [0 (mat Pa?)
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PISM (U. Alaska):

PISM basal drag coefficient (Pa s m1).
Lingle et al., JPL PARCA meeting, 2007
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® Simple inverse method “works”:

(a) converges, (b) reduces surface elevation errors, (c) deduces reasonable C(x,y) patterns.

| ® Independent of ice model. Just needs:

(a) run for ~200,000 years, (b) bedrock parameter(s) that make u, increase or decrease.

® BUT some of the deduced C(x,y) must be due to other model errors, not real bed conditions.

Lesser of two evils: cancelling errors vs. O(500m) biases in surface elevation

® Next steps:

- Combine with large-ensemble techniques? (Stone et al., The Cryo. 2010; Tarasov et al., EPSL, 2011)

- Apply to last deglaciation (Briggs et al., ISAES abs., 2011.; Whitehouse et al., QSR, 2012)
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