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Theory Numerics Results Conclusions

Motivation

So far there only few 2D-models of the subglacial drainage system
including both channelized and distributed drainage, none of
which have been applied to real geometries.

Why do we need such a model?

• provides input for the basal boundary conditions for ice flow
models

• meltwater can contribute to sea water convection in fjords
• subglacial erosion
• hazard assessment of glacier lake outburst floods
• water movement, e.g. beneath Antarctica for biology
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About water flow

Now some theory...

Water flows down the hydraulic potential

φ︸︷︷︸
hydraulic potential

= pw︸︷︷︸
pressure potential

+ ρwgH︸ ︷︷ ︸
elevation potential

For turbulent flow discharge is

q ∝ −
√
∇φ
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Water flow through a glacier
Cross-section of ablation area of glacier/ice sheet:
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Water flow through a glacier
I’ll focus on a few components of the drainage system,
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Water flow through a glacier
mainly on the subglacial drainage system
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Water flow through a glacier
and a little on the englacial drainage system.
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Model

This model

= sheet flow︸ ︷︷ ︸
linked cavities

+ channel flow︸ ︷︷ ︸
R-channels

+ storage︸ ︷︷ ︸
englacial voids/moulins

Two subglacial systems:
distributed: sheet flow
localized: R-channels
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Sheet model

Porous sheet consisting of linked cavities:

mass conservation
∂h

∂t
+∇.q = m

turbulent flow q = −kshα |∇φ|β−2∇φ

opening and closure
∂h

∂t
= vos(ub, h)− vcs(φ, h)

Kamb 1987

→ elliptic equation for φ, ODE for h

Aside: ub is the basal sliding velocity; with which two-way coupling
to ice flow could be done (together with φ).
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Channel model

Channels are modelled as R-channels:

mass conservation
∂S

∂t
+
∂Q

∂s
=

Ξ

ρwL
+mC

turbulent flow Q = −kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β−2 ∂φ

∂s

opening and closure
∂S

∂t
=

1

ρiL
Ξ(∇φ,Q)− vcC(φ, S)

→ elliptic equation for φ, ’ODE’ for S

Note that channels are 1-D creatures!
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Channels vs sheet

Sheet opens by sliding
Channel opens by melt

Both close by creep
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Coupled 2D model

A network of potential R-channels is
put on top of the sheet:

• channels on network edges Γij

• sheet in-between channels Ωi

• water conservation at network
nodes

• water exchange along channel
edges
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Englacial storage

Observations show that a significant portion of water can be
temporarily stored in a glacier, e.g., explaining the lag between
peak surface melt and peak proglacial discharge.

Distributed storage:

water stored ∝ water pressure

→ now φ equation parabolic
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And the last bit: moulins

Surface meltwater often collects in streams and enters the glacier
through moulins. Presumably each moulin connects to a
subglacial channel and also has some associated (storage) volume.

Qs surface input
Vm volume of water stored in moulin
Qm discharge into channels
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This concludes the description of the physical model
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Numerics

Parabolic hydraulic potential (φ) equation solved:
• with finite elements
• on unstructured triangular mesh
(mesh = network of potential channels)

• backward Euler time step using hybrid Picard-Newton method

ODEs for h and S are time stepped with explicit methods
(split step wrt φ equation)

Implemented in Matlab
• up to 20 000 total DOF, 8 000 φ DOF
• model runs ∼10min on laptop for 4000 DOF
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Real geometry: Gornergletscher

Model application to Gornergletscher, Switzerland

5 km by 1.5 km trunk
up to 400m deep ice
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Gornergletscher: Surface

Model domain with
surface elevation contours (interval 20m)



Theory Numerics Results Conclusions Gorner Square ice sheet

Gornergletscher: Bed

Bed elevation (contour interval 20m)
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Run to steady state

Initial conditions
• Uniform sheet thickness = 5cm
• Channel diameters = 0m

Water sources
• sheet: uniform 0.3m/day (≈ 20m3/s total)
• boundary: line source at tributaries (10m3/s total)
• channels: no input

No storage
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Example coarse mesh

Example (coarse) mesh with ∼1000 DOF produced with Triangle
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Example output
We’ll be looking at animations of this form

 Time: 300.00 (days)

 

 

Q
 (

m
3 /s

)

5

10

15

20

25

Blue edges:
channel discharge

Arrows:
flow direction in sheet



Theory Numerics Results Conclusions Gorner Square ice sheet

Run to steady state

Channel and sheet discharge
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Run to steady state

Channel discharge and contours of φ
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Model run on a square ice sheet catchment
Model application to 100x30km square ice sheet margin.

Topography
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Model run on a square glacier

IC
Uniform sheet thickness = 5cm

Channel diameters = 0m

Sources
Sheet: input with lapse rate
(0.14-0.0m/day ≈ 1400m3/s total)

Channels: no input

No storage
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Water flow
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Switching on a moulin

Here a moulin is switched on (50m3/s) draining into a steady state
drainage system.
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Switching on a moulin

Zoomed plots around moulin (slightly different run):

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day −4

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day 2

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day 48



Theory Numerics Results Conclusions Gorner Square ice sheet

Switching on a moulin

Zoomed plots around moulin (slightly different run):

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day −4

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day 2

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day 48



Theory Numerics Results Conclusions Gorner Square ice sheet

Switching on a moulin

Zoomed plots around moulin (slightly different run):

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day −4

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day 2

55 60 65 70

10

12

14

16

18

20

22

24

26

28

x (km)

y 
(k

m
)

Day 48



Theory Numerics Results Conclusions Gorner Square ice sheet

Storage

The “spooky action at a distance” when switching on the moulin is
a reason to have storage.
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Storage: moulin switch
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Storage: moulin switch
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Storage: diurnal meltwater forcing

Observations show a lag between peak surface melt and peak
proglacial discharge.
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Storage: diurnal meltwater forcing

The model can reproduce this lag between melt and proglacial
discharge with the storage term
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Storage: diurnal meltwater forcing

The model can reproduce this lag between melt and proglacial
discharge with the storage term
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Storage: diurnal meltwater forcing

The model can reproduce this lag between melt and proglacial
discharge with the storage term
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Storage: diurnal meltwater forcing

Animation of what the hydraulic potential does:



Theory Numerics Results Conclusions

Conclusions

Model

• 2D subglacial drainage system model
• both channels and distributed drainage
• water storage

Results

• formation of arborescent channel network
• works on real topographies
• point source input: ok
• diurnal meltwater forcings: ok
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Outlook

• Test it thoroughly: convergence, statistics of channels
• Explore parameters
• Add external model components: melt model, supraglacial
water routing, etc.

• Rewrite of model in faster language
• Inclusion of subglacial lakes
• Model validation with Gornergletscher observations
• Application to ice sheet catchments
• Coupling to ice flow model: CISM





Does the model converge

Question:

Does the predicted location of channels converge when the mesh is
refined?
(Other types of convergence of course also interesting.)



Steady state channels

Mesh: 444 elements, 700 edges
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Steady state channels

Mesh: 4502 elements, 6878 edges



Steady state channels

Mesh: 8933 elements, 13574 edges



Steady state channels

Mesh: 2203 elements, 3382 edges Northern channel different!



Summary of equations

Standard equations describing linked cavity sheet and R-channels:

Sheet R-channels

Mass
conserv.

∂h

∂t
+∇.q = m

∂S

∂t
+
∂Q

∂s
=

Ξ

ρwL
+mC

Turbulent
flow

q = −kshα |∇φ|β−2∇φ Q = −kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

Time
evolution

∂h

∂t
= vos − vcs

∂S

∂t
=

Ξ

ρiL
− vcC

Opening vos(ub, h) ∝ ub(hr − h) Ξ(∇φ, S) =

∣∣∣∣Q ∂φ

∂s

∣∣∣∣+ |lrq.∇φ|

Closure vcs(N,h) ∝ h|N |n−1N vcC(N,S) ∝ S|N |n−1N



Steady state for different meshes

Does the model reach a comparable steady state for different
meshes?

In particular for the channels?



Steady state for different meshes

Does the model reach a comparable steady state for different
meshes?
In particular for the channels?



Steady state for different meshes

Mesh: 1269 elements, 1969 edges



Steady state for different meshes

Mesh: 3189 elements, 4889 edges



Steady state for different meshes

Mesh: 635 elements, 1014 edges



Steady state for different meshes

Mesh: 1639 elements, 2557 edges



Steady state for different meshes

Looks ok: all have ∼1 channel per 3km width.
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