A 2-D subglacial drainage system model combining channels with sheet flow and water storage

Mauro A. Werder Ian J. Hewitt, Christian Schoof, Gwenn E. Flowers

Simon Fraser University, University of Bristol and University of British Columbia

LIWG meeting Boulder 2012

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

Why do we need such a model?

• provides input for the basal boundary conditions for ice flow models

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

- provides input for the basal boundary conditions for ice flow models
- meltwater can contribute to sea water convection in fjords

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

- provides input for the basal boundary conditions for ice flow models
- meltwater can contribute to sea water convection in fjords
- subglacial erosion

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

- provides input for the basal boundary conditions for ice flow models
- meltwater can contribute to sea water convection in fjords
- subglacial erosion
- hazard assessment of glacier lake outburst floods

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

- provides input for the basal boundary conditions for ice flow models
- meltwater can contribute to sea water convection in fjords
- subglacial erosion
- hazard assessment of glacier lake outburst floods
- water movement, e.g. beneath Antarctica for biology

So far there only few **2D-models** of the subglacial drainage system including both **channelized and distributed** drainage, none of which have been applied to real geometries.

- provides input for the basal boundary conditions for ice flow models
- meltwater can contribute to sea water convection in fjords
- subglacial erosion
- hazard assessment of glacier lake outburst floods
- water movement, e.g. beneath Antarctica for biology

About water flow

Now some theory...

About water flow

Water flows down the hydraulic potential

= p_w

 $\rho_w g H$

+

hydraulic potential

pressure potential

elevation potential

About water flow

Water flows down the hydraulic potential

+

hydraulic potential

pressure potential

elevation potential

For turbulent flow discharge is

$$q \propto -\sqrt{\nabla \phi}$$

Water flow through a glacier

Cross-section of ablation area of glacier/ice sheet:

Water flow through a glacier

I'll focus on a few components of the drainage system,

Water flow through a glacier

mainly on the subglacial drainage system

Water flow through a glacier

and a little on the englacial drainage system.

Model

 $This \ model$

Model

$This model = \underbrace{sheet \ flow}_{}$

linked cavities

Model

$$This model = \underbrace{sheet flow}_{linked cavities} + \underbrace{channel flow}_{R-channels}$$

Model

$$This \ model \ = \ \underbrace{sheet \ flow}_{linked \ cavities} \ + \ \underbrace{channel \ flow}_{R-channels} \ + \ \underbrace{storage}_{englacial \ voids/moulins}$$

Model

$$This model = \underbrace{sheet flow}_{linked cavities} + \underbrace{channel flow}_{R-channels} + \underbrace{storage}_{englacial voids/moulins}$$

Two subglacial systems: distributed: sheet flow localized: R-channels

Sheet model

Kamb 1987

Porous sheet consisting of linked cavities:

 $\begin{array}{ll} \text{mass conservation} & \frac{\partial h}{\partial t} + \nabla . \mathbf{q} = m \\ & \text{turbulent flow} & \mathbf{q} = -k_s h^\alpha \left| \nabla \phi \right|^{\beta-2} \nabla \phi \\ \text{opening and closure} & \frac{\partial h}{\partial t} = v_{os}(u_b, h) - v_{cs}(\phi, h) \end{array}$

Kamb 1987

 $\begin{array}{ll} \text{mass conservation} & \displaystyle \frac{\partial h}{\partial t} + \nabla . \mathbf{q} = m \\ & \text{turbulent flow} & \mathbf{q} = -k_s h^{\alpha} \, |\nabla \phi|^{\beta-2} \, \nabla \phi \\ \text{opening and closure} & \displaystyle \frac{\partial h}{\partial t} = v_{os}(u_b,h) - v_{cs}(\phi,h) \end{array}$

Sheet model

Kamb 1987

 \rightarrow elliptic equation for ϕ

$$\begin{array}{ll} \text{mass conservation} & \displaystyle \frac{\partial h}{\partial t} + \nabla.\mathbf{q} = m \\ & \text{turbulent flow} & \mathbf{q} = -k_s h^\alpha \, |\nabla \phi|^{\beta-2} \, \nabla \phi \\ \text{opening and closure} & \displaystyle \frac{\partial h}{\partial t} = v_{os}(u_b,h) - v_{cs}(\phi,h) \end{array}$$

Sheet model

Kamb 1987

 \rightarrow elliptic equation for $\phi,$ ODE for h

mass conservation

 $\frac{\partial h}{\partial t} + \nabla . \mathbf{q} = m$

Sheet model

CAVITY turbulent flow $\mathbf{q} = -k_s h^{lpha} \left|
abla \phi \right|^{eta-2}
abla \phi$ opening and closure $\frac{\partial h}{\partial t} = v_{os}(\mathbf{u_b}, h) - v_{cs}(\phi, h)$ ~ 10 m

Kamh 1987

Aside: u_b is the basal sliding velocity; with which two-way coupling to ice flow could be done (together with ϕ).

Channel model

Channels are modelled as R-channels:

Channels are modelled as R-channels:

$$\begin{array}{ll} \text{mass conservation} & \frac{\partial S}{\partial t} + \frac{\partial Q}{\partial s} = \frac{\Xi}{\rho_w L} + m_C \\ & \text{turbulent flow} & Q = -k_C S^\alpha \left| \frac{\partial \phi}{\partial s} \right|^{\beta-2} \frac{\partial \phi}{\partial s} \\ & \text{opening and closure} & \frac{\partial S}{\partial t} = \frac{1}{\rho_i L} \Xi (\nabla \phi, Q) - v_{cC}(\phi, S) \end{array}$$

Channels are modelled as R-channels:

$$\begin{array}{ll} \text{mass conservation} & \frac{\partial S}{\partial t} + \frac{\partial Q}{\partial s} = \frac{\Xi}{\rho_w L} + m_C \\ & \text{turbulent flow} & Q = -k_C S^\alpha \left| \frac{\partial \phi}{\partial s} \right|^{\beta-2} \frac{\partial \phi}{\partial s} \\ & \text{opening and closure} & \frac{\partial S}{\partial t} = \frac{1}{\rho_i L} \Xi (\nabla \phi, Q) - v_{cC}(\phi, S) \end{array}$$

 \rightarrow elliptic equation for ϕ

Channels are modelled as R-channels:

$$\begin{array}{ll} \text{mass conservation} & \frac{\partial S}{\partial t} + \frac{\partial Q}{\partial s} = \frac{\Xi}{\rho_w L} + m_C \\ & \text{turbulent flow} & Q = -k_C S^\alpha \left| \frac{\partial \phi}{\partial s} \right|^{\beta-2} \frac{\partial \phi}{\partial s} \\ & \text{opening and closure} & \frac{\partial S}{\partial t} = \frac{1}{\rho_i L} \Xi (\nabla \phi, Q) - v_{cC}(\phi, S) \end{array}$$

 \rightarrow elliptic equation for $\phi\text{, 'ODE'}$ for S

Channels are modelled as R-channels:

$$\begin{array}{ll} \text{mass conservation} & \frac{\partial S}{\partial t} + \frac{\partial Q}{\partial s} = \frac{\Xi}{\rho_w L} + m_C \\ & \text{turbulent flow} & Q = -k_C S^\alpha \left| \frac{\partial \phi}{\partial s} \right|^{\beta-2} \frac{\partial \phi}{\partial s} \\ & \text{opening and closure} & \frac{\partial S}{\partial t} = \frac{1}{\rho_i L} \Xi (\nabla \phi, Q) - v_{cC}(\phi, S) \end{array}$$

 \rightarrow elliptic equation for $\phi\text{, 'ODE'}$ for S

Note that channels are 1-D creatures!

Channels vs sheet

Sheet opens by sliding Channel opens by melt Both close by creep

Coupled 2D model

A network of *potential* R-channels is put on top of the sheet:

Coupled **2D** model

A network of *potential* R-channels is put on top of the sheet:

• channels on network edges Γ_{ij}

Coupled 2D model

A network of *potential* R-channels is put on top of the sheet:

- channels on network edges Γ_{ij}
- sheet in-between channels Ω_i

Coupled 2D model

A network of *potential* R-channels is put on top of the sheet:

- channels on network edges Γ_{ij}
- sheet in-between channels Ω_i
- water conservation at network nodes

Coupled 2D model

A network of *potential* R-channels is put on top of the sheet:

- channels on network edges Γ_{ij}
- sheet in-between channels Ω_i
- water conservation at network nodes
- water exchange along channel edges

Englacial storage

Observations show that a significant portion of water can be **temporarily stored** in a glacier, e.g., explaining the lag between peak surface melt and peak proglacial discharge.

Englacial storage

Observations show that a significant portion of water can be **temporarily stored** in a glacier, e.g., explaining the lag between peak surface melt and peak proglacial discharge.

Distributed storage:

water stored \propto water pressure

Englacial storage

Observations show that a significant portion of water can be **temporarily stored** in a glacier, e.g., explaining the lag between peak surface melt and peak proglacial discharge.

Distributed storage:

water stored \propto water pressure

 \rightarrow now ϕ equation parabolic

And the last bit: moulins

Surface meltwater often collects in streams and enters the glacier through moulins. Presumably each **moulin connects to a subglacial channel** and also has some associated (storage) volume.

And the last bit: moulins

Surface meltwater often collects in streams and enters the glacier through moulins. Presumably each **moulin connects to a subglacial channel** and also has some associated (storage) volume.

 Q_s surface input V_m volume of water stored in moulin Q_m discharge into channels

Theory Numerics Results Conclusions

This concludes the description of the physical model

Parabolic hydraulic potential (ϕ) equation solved:

- with finite elements
- on unstructured triangular mesh (mesh = network of potential channels)
- backward Euler time step using hybrid Picard-Newton method

Parabolic hydraulic potential (ϕ) equation solved:

- with finite elements
- on unstructured triangular mesh (mesh = network of potential channels)
- backward Euler time step using hybrid Picard-Newton method

ODEs for h and S are time stepped with explicit methods (split step wrt ϕ equation)

Parabolic hydraulic potential (ϕ) equation solved:

- with finite elements
- on unstructured triangular mesh (mesh = network of potential channels)
- backward Euler time step using hybrid Picard-Newton method

ODEs for h and S are time stepped with explicit methods (split step wrt ϕ equation)

Implemented in Matlab

Parabolic hydraulic potential (ϕ) equation solved:

- with finite elements
- on unstructured triangular mesh (mesh = network of potential channels)
- backward Euler time step using hybrid Picard-Newton method

ODEs for h and S are time stepped with explicit methods (split step wrt ϕ equation)

Implemented in Matlab

- up to 20 000 total DOF, 8 000 ϕ DOF
- model runs ${\sim}10\,{
 m min}$ on laptop for 4000 DOF

Real geometry: Gornergletscher

Model application to Gornergletscher, Switzerland

5 km by 1.5 km trunk up to 400 m deep ice

Gornergletscher: Surface

Model domain with surface elevation contours (interval 20m)

Gornergletscher: Bed

Bed elevation (contour interval 20m)

Initial conditions

- Uniform sheet thickness = 5cm
- Channel diameters = 0m

Initial conditions

- Uniform sheet thickness = 5cm
- Channel diameters = 0m

Water sources

- sheet: uniform 0.3m/day (\approx 20m³/s total)
- boundary: line source at tributaries (10m³/s total)
- channels: no input

Initial conditions

- Uniform sheet thickness = 5cm
- Channel diameters = 0m

Water sources

- sheet: uniform 0.3m/day (\approx 20m³/s total)
- boundary: line source at tributaries (10m³/s total)
- channels: no input

No storage

Example coarse mesh

Example (coarse) mesh with \sim 1000 DOF produced with Triangle

Example output

We'll be looking at animations of this form

Blue edges: channel discharge

Arrows:

flow direction in sheet

Channel and sheet discharge

Model run on a square ice sheet catchment Model application to 100x30km square ice sheet margin.

Topography

is Gor

Model run on a square glacier

IC

Uniform sheet thickness = 5 cm

Channel diameters = 0m

Sources

Sheet: input with lapse rate (0.14-0.0m/day \approx 1400m³/s total)

Channels: no input

No storage

Water flow

Here a moulin is switched on $(50 \text{ m}^3/\text{s})$ draining into a steady state drainage system.

Zoomed plots around moulin (slightly different run):

Zoomed plots around moulin (slightly different run): Day -4 Day 48 y (km) x (km) x (km) x (km)

Storage

The "spooky action at a distance" when switching on the moulin is a reason to have storage.

Observations show a lag between peak surface melt and peak proglacial discharge.

The model can reproduce this lag between melt and proglacial discharge with the storage term

The model can reproduce this lag between melt and proglacial discharge with the storage term

The model can reproduce this lag between melt and proglacial discharge with the storage term

Animation of what the hydraulic potential does:

Conclusions

Conclusions

Model

• 2D subglacial drainage system model

Conclusions

- 2D subglacial drainage system model
- both channels and distributed drainage

Conclusions

- 2D subglacial drainage system model
- both channels and distributed drainage
- water storage

Conclusions

- 2D subglacial drainage system model
- both channels and distributed drainage
- water storage

Conclusions

Model

- 2D subglacial drainage system model
- both channels and distributed drainage
- water storage

Results

• formation of arborescent channel network

Conclusions

Model

- 2D subglacial drainage system model
- both channels and distributed drainage
- water storage

Results

- formation of arborescent channel network
- works on real topographies

Conclusions

Model

- 2D subglacial drainage system model
- both channels and distributed drainage
- water storage

Results

- formation of arborescent channel network
- works on real topographies
- point source input: ok

Conclusions

Model

- 2D subglacial drainage system model
- both channels and distributed drainage
- water storage

Results

- formation of arborescent channel network
- works on real topographies
- point source input: ok
- diurnal meltwater forcings: ok

Outlook

- Test it thoroughly: convergence, statistics of channels
- Explore parameters
- Add external model components: melt model, supraglacial water routing, etc.
- Rewrite of model in faster language
- Inclusion of subglacial lakes
- Model validation with Gornergletscher observations
- Application to ice sheet catchments
- Coupling to ice flow model: CISM

Does the model converge

Question:

Does the predicted location of channels converge when the mesh is refined?

(Other types of convergence of course also interesting.)

Mesh: 444 elements, 700 edges

Mesh: 935 elements, 1458 edges

Mesh: 4502 elements, 6878 edges

Mesh: 8933 elements, 13574 edges

Mesh: 2203 elements, 3382 edges Northern channel different!

Summary of equations

Standard equations describing linked cavity sheet and R-channels:

	Sheet	R-channels
Mass conserv.	$\frac{\partial h}{\partial t} + \nabla . \mathbf{q} = m$	$\frac{\partial S}{\partial t} + \frac{\partial Q}{\partial s} = \frac{\Xi}{\rho_w L} + m_C$
Turbulent flow	$\mathbf{q} = -k_s h^\alpha \left \nabla \phi \right ^{\beta-2} \nabla \phi$	$Q = -k_C S^{\alpha} \left \frac{\partial \phi}{\partial s} \right ^{\beta - 2} \frac{\partial \phi}{\partial s}$
Time evolution	$\frac{\partial h}{\partial t} = v_{os} - v_{cs}$	$\frac{\partial S}{\partial t} = \frac{\Xi}{\rho_i L} - v_{cC}$
Opening	$v_{os}(u_b,h) \propto u_b(h_r-h)$	$\Xi(\nabla\phi,S) = \left Q \frac{\partial\phi}{\partial s} \right + l_r \mathbf{q}.\nabla\phi$
Closure	$v_{cs}(N,h) \propto h N ^{n-1}N$	$v_{cC}(N,S) \propto S N ^{n-1}N$

Does the model reach a comparable steady state for different meshes?

Does the model reach a comparable steady state for different meshes? In particular for the channels?

Mesh: 1269 elements, 1969 edges

Mesh: 3189 elements, 4889 edges

Mesh: 635 elements, 1014 edges

Mesh: 1639 elements, 2557 edges

Looks ok: all have ${\sim}1$ channel per 3km width.