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Motivation: Why runoff routing Is important?

» Linkage between land surface and ocean (to complete
global water cycle);

» Linkage between human and nature (surface water
withdrawal, reservoir operation, etc.);

» Linkage between water and other fluxes (Carbon,
sediment, nutrients etc.).

Objectives: What kind of model do we need?

» Consistent process representation across various scales
(global, regional, local);

» Easy to be coupled with water management module;

» Easy to be coupled with other fluxes.



River Transport Model (RTM) in CLM 4.0

» Study area divided into cells

» Flow direction is determined
by D8 algorithm

» Cell-to-cell routing with a
linear advection model

S — storage with a cell
Q — flow entering/leaving the cell

(dS °Q, ~Qu +R R — runoff generation within the cell
) dt & ein ot v -- velocity of channel flow,
v
Quou :ES d -- distance between cell centers
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Limitations of RTM

» Over-simplification of river networks;

» Over-simplification of physical processes.
m Global constant channel velocity
m No account for sub-grid heterogeneity

Improvement could be achieved by

» Better representation of spatial structure;

» Better representation of physical processes.
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Improving the representation of spatial structure
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Hierarchical dominant river tracing
(Wu et al., 2011)

Preserving the natural boundaries
of runoff accumulation and river
system organization
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Subbasin-based representation

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Improving the representation of physical processes

Real river network Conceptualized network

——— Tributary

™, —— Main channel

» Hillslope routing to account for event dynamics and impacts
of overland flow on solil erosion, nutrient loading etc.;

» Sub-network routing: scale adaptive across different
resolutions to reduce scale dependence;

» Main channel routing: explicit estimation of in-stream status
s (velocity, water depth etc).



Model for Scale Adaptive River Transport

(MOSART)

Scale adaptive
between-grid routing

(scale independent main channel

Scale adaptive
within-grid routing

(scalable sub-network channel)
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Case Study: Columbia River Basin
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Inputs and Parameters

» Daily runoff generation from Variable Infiltration Capacity
model (VIC) at 1/16 degree resolution (UW hydrology group)

» Spatial delineation and network based on HydroSHEDS

m DRT algorithm for grid-based representation 1/16, 1/8, ¥4 and
Y, degree resolutions

m ArcSWAT package for subbasin-based representation
(average size ~109km?)

» Manning’s roughness for hillslope routing set to 0.4, for
channel routing set to 0.05

» Evaluation against monthly naturalized streamflow data at
selected major stations
o
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Improved streamflow simulations

NS coeff. for monthly mean streamflow — grid based representation

1
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

0 -

DALLE ICEHA PRIRA CHIEF BROWN WANET CORRA ARROW

Q_RTM(1/2)
= Q_RTM(1/4)
=Q RTM(1/8)
=Q_RTM(1/16)
0Q_MOSART(1/2)
mQ_MOSART(1/4)
®Q_MOSART(1/8)
®Q_MOSART(1/16)
mQ_VIC(1/16)

NS coeff. for menthly mean streamflow -- subbasin based representation
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Improved timing at major gauge stations
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Realistic channel velocity estimation
— comparison with observation

Dalles station - Mean Monthly Stream Discharge (m3fs)
15000 T T T T T T T T T

0 / 14 1) 1 I
ST wov y’ The “observed” channel JoL AUG  SEP
—/ velocity has been reduced by

e 'F { dam operation etc. 1

0 1 I 1 \ /I I 1 I 1 I
OCT MO DEC JA \/ MAR APR MAAY AU UL ALG SEP
Friest Rapids station - Mean Monthly Channel Welocity (m/s)
2 T T T T T T |||ll'|'“, T
2
L0 '
= 9
0 1 1 1 1 1 1 1 1 1 1
OCT MO DEC JA FEE AR APR A JUIr UL ALG SEP
S W = LT FS A SRR 2 Ty e MOSART1/4%) MOSART1/EY) MOSART1/16%) RTh

H
12 Uty Ui ) asaL e Ueeee 1o U



Realistic channel velocity estimation
— Comparison with a hydraulic model

lce Harbor station - Mean Monthly Stream Discharge (m3fs)
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Summary and future work
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We have developed a new routing module, MOSART, for
both grid- and subbasin-based representations;

The performance of MOSART is consistently superior to
RTM at various resolutions, and comparable with VIC
routing model when tested over the Columbia River Basin;

MOSART provides realistic estimation of channel velocities,
which was assumed to be constant in RTM and VIC;

Incorporating MOSART into the CESM framework and its
global test;

Developing a water management module coupled with
MOSART,

Evaluating MOSART at finer temporal resolutions.
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