CCSM Working Group Meetings

CLM-related model evaluations and improvements at the University of Arizona

Paul Shao Representing Xubin Zeng's group

shao@atmo.arizona.edu

Department of Atmospheric Sciences University of Arizona

CLM-Related Progresses

CLM4 improvement

• Skin temperature diurnal cycle over arid regions (Zeng et al.)

Land-atmosphere interaction

- Land-precipitation coupling strength (Zeng et al.)
- Impact of interannual climatic variabilities on vegetation (Shao et al.)

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

Ongoing work (not discussed here)

- Global 1 km hybrid 3-D hydrological modeling
- B2 Landscape Earth Observatory (LEO)

Improve the Skin Temperature Diurnal Cycle over Arid Regions (Zeng et al. 2012; in press)

 $In(z_{om}/z_{ot}) = 0.36 (u_* z_{om}/v)^{0.5}$ $u_{*min} = 0.07 \rho_0 / \rho (z_{om}/z_{og})^{0.18}$ minimum K_{soil} = 0.75 Wm⁻¹K⁻¹

Mean absolute deviation (K)Desert RockGaizeCon1.94.6New0.71.8

New - Control Global T42 July

The same formulation for roughness length has been Implemented and tested in NCEP GFS operational Model (Zheng et al. 2012; in press)

Significant improvement over semi-arid regions

Significant increase in the number of surfacesensitive satellite brightness temperature data assimilated (not shown)

Land-atmosphere interaction

• Land-precipitation coupling strength (Zeng et al.)

• Influence of interannual climatic variabilities on vegetation(Shao et al.)

Land-Precipitation Coupling Strength (Zeng et al. 2010)

 $\Gamma = \Sigma P' E' / \Sigma P' P'$

E', P' are monthly deviations from climatology

ECMWF 45yr Reanalysis

7

Γ provides a simple indicator to characterize a GCM's coupling strength

CCSM3 coupling is too strong

2*CO₂ increases the coupling strength over high latitudes in summer

Land-atmosphere interaction

• Land-precipitation coupling strength (Zeng et al.)

• Impact of interannual climatic variabilities on vegetation (Shao et al.)

- CLM/DGVM forced by observations from 1950-1999 versus from climatology.

Impact of Climatic Interannual Variabilities on Vegetation(Shao et al. 2011)

fractional cover distribution along the P&T

the expansion of grass is mainly due to the reduction of tree and shrub

Percent coverage differences in relation to mean and standard deviation of climatic factors

12

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

A water-balance based "toy" model (Zeng et al. 2012; in revision)

as good as a neural network for monthly river flow prediction, but the toy model is more robust. They are both much better than CLM4 simulation.

CLM evaluations

• Monthly river flow prediction (or simulation) (Zeng et al.)

• CMIP5 carbon cycle (Shao et al.)

- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

CMIP5: GPP /NBP in historical and RCP4.5 exp (Shao et al.)

general pattern: similar magnitude: very different

discrepancies exist ¹⁶

GPP : increased in every model; NBP: close to 0 for balance

correlations between global historical NBP and climatic variables

18

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

Years to Reach the Steady State of Fractional Cover (Sakaguchi et al.)

Evergreen Tree PFTs

- Longer years for dry regions and for NET Boreal

Steady State of Fractional Cover

									> 600
% of global grid				101 -	201 -	301 -	401 -	501 -	or
boxes to reach steady state for tree PFTs.			1 - 100	200	300	400	500	599	unstable
		NET temp	0	17	37	5	2	3	37
		NET boreal	0	1	36	16	5	5	37
		BET tropical	0	69	12	5	1	1	11
		BDT tropical	0	77	14	5	2	1	2
		BDT temp	1	30	36	8	5	5	15
	/	BDT boreal	0	9	30	19	6	5	30

Example: NET temperate

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

Dynamic root function (Christoffersen et al., in prep)

Amazon: Observations indicate root uptake shifts to deeper layers during dry season

- Can CLM and other models capture this dynamic aspect of root function?
- Use a suite of models:
 - CLM3.5-DGVM, IBIS, JULES, ED2, SiB3, SPA
 - standardized soil physics
 - span range of complexity in treatment of root function

Dynamic root function (Christoffersen et al., in prep)

Amazon: Observations indicate root uptake shifts to deeper layers during dry season

- Can CLM and other models capture this dynamic aspect of root function?
- Use a suite of models:
 - CLM3.5-DGVM, IBIS, JULES, ED2, SiB3, SPA
 - standardized soil physics
 - span range of complexity in treatment of root function

Which model best captures dynamic root behavior?

Difference between wet & dry season depth of root uptake across 4 forest sites

Which model best captures dynamic root behavior?

Difference between wet & dry season depth of root uptake across 4 forest sites

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

PFT Distribution across Amazon in CLM4 (Moreno et al.)

- PFT distribution, after 200 years, shows coverage of both tropical evergreen and deciduous trees.
- CLM4 over-represents deciduous tree cover in Amazonia.

Broadleaf Deciduous Tropical Tree (%)

PFT Establishment

- Initially CLM populates the forest composition with the deciduous tropical trees
- Tropical evergreen trees are slow to establish and do not overtake the deciduous composition.

deciduous

evergreen

Summary

CLM4 improvement

• Developed formulations to improve skin temperature over arid regions

Land-atmosphere interaction

- Proposed a simple index for land-precipitation coupling strength
- Demonstrated the impact of interannual climate variability on plant distribution in CLM/DGVM

CLM evaluations

- Identified CLM deficiencies in monthly river flow simulation
- Analyzed the CMIP5 carbon cycle
- analyzed the spinup time in carbon/biomass in CLM-CNDV
- Demonstrated the need for dynamic root function
- identified the PFT distribution deficiency across Amazon in CLM-CNDV