

Influence of prognostic land use on 21st century climate prediction

Peter Thornton², Jae Edmonds¹, Bill Collins³, George Hurtt^{1,4}, Jiafu Mao², Xiaoying Shi², Tony Janetos¹, Allison Thomson¹, Ben Bond-Lamberty¹, Kate Calvin¹, Louise Chini⁴, Andy Jones³, Tony Craig³, John Truesdale³

Coupling an Integrated Assessment Model with an Earth System Model: Why bother?

- Land use and land cover change (LU/LCC) are significant drivers of GHG fluxes and physical climate feedbacks
- Social, economic, and policy factors are important drivers of LU/LCC.
- Socio-economic scenarios used to assess the potential extent and impacts of future climate change make strong assumptions about LU/LCC.

Relative importance of LU/LCC as a driver of net land carbon flux

Impacts on total land carbon stock, 1850-2009

Impacts on total land carbon stock, 1850-2009

Standard coupling strategy

Impact on GCAM predictions: LU/LCC emissions

Impact on CESM predictions: C stocks

Evaluating multiple formulations for the CLM – to – GCAM climate signal

C-flux is less affected than C-stock by the (unwanted) effects of landcover change

