
CESM OMWG meeting NCAR December 14-15 2011

Converting the OMWG
diagnostic scripts to NCL
Observations and lessons learned

Dave Brown
NCL Development Team

CESM OMWG meeting NCAR December 14-15 2011

Topics

• Motivation for this project
• Background and current status
• Implementation guidelines
• Comparison of graphical output
• NCL vs. IDL
• Comparison of source code
• Lessons learned

CESM OMWG meeting NCAR December 14-15 2011

Motivation
• ParVis: provide parallel-processing solutions for the

big data problem facing climate researchers
• Led by ANL; collaborators include NCAR, PNNL,

SNL and UC-Davis
• Multiple goals including (among others):

– (long term) ParNCL: a parallel version of NCL
– (short term) Use SWIFT, a task-parallel scripting tool to

improve performance for existing tasks

• The diagnostics make good ParVis case studies
• Immediate benefit: provide non-proprietary open and

free code that users can deploy anywhere

CESM OMWG meeting NCAR December 14-15 2011

AMWG diagnostics status
• C-shell scripts run NCO tools for data

reduction and NCL for analysis and viz
• Converted to Swift originally by John Dennis
• Changes to Swift to accommodate the

diagnostic package work flow.
• For ParVis, an all-NCL version developed for

comparison between the new ParNCL and
the existing version using NCO tools (or a
parallel-enabled replacement, Pagoda from
PNNL)

CESM OMWG meeting NCAR December 14-15 2011

AMWG Diagnostics

Courtesy Mike Wilde

CESM OMWG meeting NCAR December 14-15 2011

OMWG diagnostics status
• 96% complete – 84 of 87 scripts

– popdiag and popdiagdiff finished
– popdiagts: 3 to go

• 2 of 3 Fortran procedures (wrapped as
shared objects for now – eventually will
become built-in NCL routines)

• Basically transparent to user – scripts
work the same as they always have

CESM OMWG meeting NCAR December 14-15 2011

Courtesy Sheri Mickelson

Preliminary Timings for popdiag.csh

CESM OMWG meeting NCAR December 14-15 2011

Conversion project guidelines

• Conservative approach
• Results must match mathematically and graphically
• Therefore initial version retains original colormaps,

contour levels, and line colors for ease of verification
• Similar positioning of annotations, but font styles, etc.

allowed some variation
• Fairly literal translation of code where performance

not affected
• Array arithmetic used more aggressively since NCL

looping performance is slower

CESM OMWG meeting NCAR December 14-15 2011

OMWG diagnostic output
comparisons

• NCL output online:
– http://www.ncl.ucar.edu/Applications/popdi

ag/pd.1981_2005/popdiag.html
• Current IDL output online:

– http://www.cesm.ucar.edu/experiments/ces
m1.0/diagnostics/b40.20th.track1.1deg.005
/ocn_1981-2005-obs/popdiag.html

http://www.ncl.ucar.edu/Applications/popdiag/pd.1981_2005/popdiag.html�
http://www.ncl.ucar.edu/Applications/popdiag/pd.1981_2005/popdiag.html�
http://www.cesm.ucar.edu/experiments/cesm1.0/diagnostics/b40.20th.track1.1deg.005/ocn_1981-2005-obs/popdiag.html�
http://www.cesm.ucar.edu/experiments/cesm1.0/diagnostics/b40.20th.track1.1deg.005/ocn_1981-2005-obs/popdiag.html�
http://www.cesm.ucar.edu/experiments/cesm1.0/diagnostics/b40.20th.track1.1deg.005/ocn_1981-2005-obs/popdiag.html�

IDL:

NCL:

IDL:

NCL:

IDL:

NCL:

IDL:

NCL:

CESM OMWG meeting NCAR December 14-15 2011

NCL vs. IDL
(the good, the bad, and the ugly)

• Many apparent similarities
– ; (semicolon) starts a comment
– Fortran-like syntax features: e.g. .eq. (NCL), eq (IDL)
– Overall verbosity (lines of code): 14424 (NCL), 14388 (IDL)
– Similar array syntax: 0-based element counting

• Significant differences
– NCL: row-major like C; IDL: column-major like Fortran
– Graphics code has a different model
– NCL’s built-in support for missing values helps simplify code
– NCL’s NetCDF-like variable model allows easier access for

attributes and other metadata
– IDL looping is definitely faster (script is compiled)
– (Therefore) more important to use array syntax in NCL

; IDL open file, read variable, and handle attribute if it exists
fileid = ncdf_open(file_netcdf)
varid = ncdf_varid(fileid, 'SALT')
ncdf_varget, fileid, varid, salt
f_struct = ncdf_varinq(fileid,varid)
n_att = f_struct.natts
for n_att=0,n_att-1 do begin
 if (ncdf_attname(fileid, varid, n_att) eq 'scale_factor') then begin
 ncdf_attget, fileid, varid, 'scale_factor', scale_field
 good = where(salt gt -10. AND salt lt 1.e10)
 salt[good] = scale_field * salt[good]
 endif
endfor

;NCL open file, read variable and handle attribute if it exists
;Note: attribute is part of variable, _FillValue support ensures that
;missing values are automatically ignored

fileid = addfile(file_netcdf,"r”)
salt = fileid->SALT
if (isatt(salt,”scale_factor”)) then
 salt = salt * salt@scale_factor
end if

 NetCDF file handling comparison

(the good)

; variable field contains temperature anomalies : lon x lat x time
; the task is to average values near the equator from y_min to y_max
; tarea has the area weights on the T grid
; anom is lon x time averaged over lat
; triple-nested loop handles each array element individually

anom = dblarr(nx,nt)
anom(*,*) = double(0.)
for n=0,nt-1 do begin
 for i=0,nx-1 do begin
 area_wt = double(0.)
 max_anom = double(0.)
 for j=y_min,y_max do begin
 if (field(i,j,n) lt missing) then begin
 anom(i,n) = anom(i,n) + tarea(i,j) * field(i,j,n)
 if (anom(i,n) gt max_anom) then max_anom = anom(i,n)
 area_wt = area_wt + tarea(i,j)
 endif
 endfor
 if (area_wt ne 0.) then begin
 anom(i,n) = anom(i,n) / area_wt
 endif else begin
 anom(i,n) = missing
 endelse
 endfor
endfor

 Calculating weighted average (IDL)

; variable field contains temperature anomalies : time x lat x lon
; the task is to average values near the equator from y_min to y_max
; tarea has the area weights on the T grid
; anom is time x lon averaged over lat
; conforming the dimensions of tarea with the field variable allows
; NCL to perform element by element array arithmetic and avoids loops
; However, note that the conform_dims function creates an array with nt
; redundant copies of the same data. The temporary array then needs to be
; deleted.

sub_y = y_max - y_min + 1
tarea_conform = conform_dims((/ nt, sub_y, nx /), \
 tarea(y_min:y_max,:), (/ 1, 2 /))
subfield = tarea_conform * field(:,y_min:y_max,:) ; time * lat * lon
anom = dim_sum_n_Wrap(subfield,1)
tarea_anom = dim_sum_n_Wrap(tarea_conform,1)
anom = anom / tarea_anom
delete(tarea_conform)
delete(subfield)

 Calculating weighted average (NCL)

(the bad)

; a more complicated code with multiple nested loops that requires access to
; adjacent cells along 2 dimensions during each pass.
; Only the beginning shown here

for ns=1,ns_max do begin

 print, ' smoothing pass ', ns

 field_temp_1 = MLD

 for j=1,ny-2 do begin
 for i=0,nx-1 do begin

 im1 = i-1
 ip1 = i+1
 if (i eq 0) then im1 = nx-1
 if (i eq nx-1) then ip1 = 0

 cc = double(tarea(i ,j))
 ce = double(tarea(ip1,j))
 cw = double(tarea(im1,j))
 cn = double(tarea(i ,j+1))
 cs = double(tarea(i ,j-1))
 sum = cc + ce + cw + cn + cs
 cc = cc / sum
 ce = ce / sum
…

 Smoothing code for mixed layer depth value (IDL)

; Sample lines of my attempt to recreate this code in NCL eliminating loops.
; Eventually I got it to work more or less, but it still did not have the
; desired performance and it just looks too complicated to be maintainable.

tarea_sum = tarea
tarea_sum(1:ny-2,1:nx-2) = \
 tarea(1:ny-2,1:nx-2) + tarea(1:ny-2,:nx-3) + tarea(1:ny-2,2:nx-1) + \
 tarea(:ny-3,1:nx-2) + tarea(2:ny-1,1:nx-2)
tarea_sum(1:ny-2,0) = \
 tarea(1:ny-2,0) +tarea(1:ny-2,nx-1) + tarea(1:ny-2,1) + \
 tarea(:ny-3,0) + tarea(2:ny-1,0)
…

MLD_new(:,:,1:ny-2,1:nx-2) = \
 MLD(:,:,1:ny-2,1:nx-2) * cc_c(:,:,1:ny-2,1:nx-2) + \
 MLD(:,:,1:ny-2,:nx-3) * cw_c(:,:,1:ny-2,1:nx-2) + \
 MLD(:,:,1:ny-2,2:nx-1) * ce_c(:,:,1:ny-2,1:nx-2) + \
 MLD(:,:,:ny-3,1:nx-2) * cn_c(:,:,1:ny-2,1:nx-2) + \
 MLD(:,:,2:ny-1,1:nx-2) * cs_c(:,:,1:ny-2,1:nx-2)
; etc.

 Smoothing code for mixed layer depth value (NCL)

When the effort to avoid looping in NCL means the code
starts looking like this, it’s probably time to switch to Fortran
and create a shared object.

(the ugly)

CESM OMWG meeting NCAR December 14-15 2011

Summary

• New OMWG diagnostic suite verified
and available by the end of the year

• Freely distributable open source
• Performance and graphics similar to

existing suite
• Future improvements possible
• Suggestions welcome

Questions?

NCL: http://www.ncl.ucar.edu

Thanks to Susan Bates and Gokhan Danabasoglu for their
support of this project and Dennis Shea and Mary Haley
 for their good advice

Email: dbrown@ucar.edu

	Converting the OMWG diagnostic scripts to NCL
	Slide Number 2
	Motivation
	AMWG diagnostics status
	Slide Number 5
	OMWG diagnostics status
	Slide Number 7
	Conversion project guidelines
	OMWG diagnostic output comparisons
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	NCL vs. IDL�(the good, the bad, and the ugly)
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Summary
	Questions?

