Many Core Disruptive Technologies

 areComing!*
Dr. Richard Loft
Director, Technology Development
Computational and Information Systems Laboratory
Ocean Modeling Working Group Meeting December 15, 2011

What do I mean by "Many Core"?

- 2005 processor clock speeds have stagnated
- Why? Power consumption of high-Hz silicon
- Design strategy: many cores per socket clocked at low-Hz + many threads per core
- Where are we going? processors with hundreds of cores and thousands of threads
- But it gets worse...

NCAR

Accelerator Node Architecture

Now Moving to Many Core:

XSEDE: TACC Stampede (2013) 10 PF
Intel MIC +Intel Sandy Bridge
DoE: ORNL Titan (2012)
~20 PF
18K NVidia Kepler GPU's + AMD Interlagos
NSF Track 1: NCSA Blue Waters (2012)
>11.5 PF
AMD Interlagos + 3000 NVidia Kepler GPU's
DoE: Argonne Mira (2012)
9.2 PF

45,152 BG/Q SoC's

Concerns

- Power crunch
- Many cores clocked @ 1.x GHz and thus use less power
- Utility/system fit-up costs for power-hungry systems are becoming cost prohibitive.
- Are our applications being left behind?
- If we can't use the large NSF and DoE systems effectively, what impact will that have on our programs?
- We know some work is being done (WRF, HOMME) but it appears "piecemeal" and under-resourced
- What's the right strategy?
- Slacker model - wait for SW/HW to "improve"...
- Red-bull - hire a bunch of ace hackers and go for it?
- Something in between?

NCAR

We need an integrated assessment of multiple objectives, challenges:

CESM Science Objectives

CESM Model Component Directions

Software Programming Models

Disruptive Technologies

Possibly Many-Core Path Forward

CESM -
Fortran+MPI+OpenM P
Works well on 4-6 core processors

Pipeline not meant to suggest that architectural investigations must occur sequentially...

Refactor code for higher thread parallelism...

Cuda Fortran/OpenACC Directives

IBM Blue Gene

BG-L - 2 cores
BG/P - 4 cores
BG/Q - 16x4*

Intel MIC Processor	Nvidia Graphics Card
Kn. Ferry $-32 \times 4^{*}$	
Kn. Corner $\sim 64 \times 4^{*}$	Fermi $-16 \times 32^{*}$
$:$	Kepler $\sim 32 \times 32^{*}$

*cores X threads/core: most cores now have some form of multithreading

This is hopefully the start of a broader discussion with the CESM community...

Thanks!

Blue Gene/Q: System on a Chip $\frac{1}{0}$

Blue Gene/Q chip layout DNCAR

Intel MIC Processor Family

Knights Ferry

- Software development platform
- Growing availability through 2010
- 32 cores, 1.2 GHz
- 128 threads at 4 threads / core
- 8MB shared coherent cache
- 1-2GB GDDR5
- Bundled with Intel HPC tools

Software development platform for Intel MIC architecture

NVidia Fermi GPU Processors

- 512 CUDA cores
- 32 Cores/SM
- 16 SM
- 4x more core/SM than GT200

64 KB Shared Memory / Li Cache

