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Substantial model uncertainty regarding future carbon uptake

Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP)
CO2 uptake Climate sensitivity

◮ Ocean carbon sink reduces airborne fraction, mitigating CO2-induced warming;

◮ Climate warming will reduce the ocean sink, but projected climate sensitivity
varies widely;

◮ Use observations to validate model performance.

Friedlingstein et al. 2006
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Two 20th-Century experiments: ocean-ice & coupled

1. CORE20C: CORE-forced hindcast (60 year repeating cycle)

◮ Ocean model forced with atmospheric observations and reanalyses

2. CPLD20C: fully-coupled 20th Century integration

Control

Transient

:: Introduction :: 3



Sea-air pCO2 difference drives gas exchange

Obs: Takahashi et al. 2009 negative := ocean uptake
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Air-sea exchange:

Jco2 = (1− Aice)kα
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)

= (1− Aice)kα∆pCO2

where
k = piston velocity (empirical), and

α = solubility, f (T , S)

Sarmiento & Gruber 2006
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Seasonal pCOsw
2 -cycle is well simulated

Takahashi (Obs)
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Interannual variability in sea-air CO2 flux

Monthly sea-air flux anomalies
CORE20C

∆pCO2(SST)

Niño3.4
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Anthropogenic CO2

Inventory

Net air-sea flux

GLODAP: 118± 19 Pg C (±16%)
Hindcast: 88.1 Pg C (25% low)
Coupled: 90.3 Pg C (23% low)
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One ocean model, different atmospheric forcing

Zonal-mean zonal windstress
Coupled

CORE-forced

◮ Coupled model winds:

• max wind stress ∼50% greater;
• shifted poleward.
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Antarctic circumpolar current

Drake Passage transport

Obs

CORE-forced

Coupled

◮ Stronger winds in coupled model
drive accelerated ACC flow,
stronger overturning.

Meridional overturning circulation
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Polar Southern Ocean falls behind

Sea ice coverage

Coupled

CORE-forced
Obs.

Sea-air ∆pCO2

CORE-forced

Coupled

South of 60◦S

Global

N. Atlantic

Carbon budget (below 60◦S) [Pg C]

∆DIC Phy Bio Gas Virt

CORE +0.61 +23.5 −22.7 +6.8 −7.1
CPLD +0.25 +18.9 −18.5 +8.4 −8.5
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Southern Ocean anthropogenic CO2

Zonal integral of Cant

Coupled
(56 Pg)

CORE-forced
(54 Pg)

Time-integrated uptake

Coupled
(50 Pg)

CORE-forced
(51 Pg)

Storage

Meridional overturning circulation
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Strong deficiencies in mode and intermediate waters
pCFC-11 Anthropogenic CO2
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Trends in Southern Hemisphere winds

Maximum zonal-mean zonal windstress
CCSM4

20th Century
ensemble meanCESM1

20th Century
BGC integrations
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Control ± 1σ
(900 years)

11-year running mean
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Trends in Southern Hemisphere winds

Maximum zonal-mean zonal wind

CORE winds
(+0.1 N m−2 offset)

}

Control ± 1σ
(900 years)

11-year running mean
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Trends in Southern Ocean CO2 fluxes
Spatially-integrated fluxes (south of 45◦S)
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Trends (Pg yr−2)

CORE1 Coupled CCSM32

Modern: −0.003 −0.007 −0.004

Natural: +0.007 +0.001 +0.005

Anthro: −0.011 −0.010 +0.009

1 Includes 0.004 Pg yr−2 global drift correction.

2 Lovenduski et al. 2008
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Mechanisms governing variability in air-sea CO2 flux

Monthly anomalies

Y
′

= Y − Y mon

Taylor series approximation

Y
′
≈

∑

i

∂Y

∂X
X

′

i + O(X ′2
i ,X

′

i X
′

j )

Application to carbon system variables

J
′

co2
≈ (kα)′∆pCO2 + (kα)∆pCO′

2 +
(

(kα)′∆pCO′

2 − (kα)′∆pCO′

2

)

pCO
′

2 ≈
∂pCO2

∂T
T

′

+
∂pCO2

∂SFW

S
′

+
∂pCO2

∂DIC
sDIC

′

+
∂pCO2

∂Alk
sAlk

′

∫ 100

0

(

∂DIC

dt

)

′

dz = J
′

co2
+ J

′

virtual + J
′

bio + J
′

phy

Climate variability control

Regress Taylor-series components ( ∂Y
∂X
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i ) on climate indices (Ψ):
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Sea-air CO2 flux response to SAM
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pCOsw
2 response to SAM Sea-air flux anomaly
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kα
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SST
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DIC inventory anomaly
Virtual

Gas

Biology Adv/mix
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Summary

◮ CESM has a credible representation of ocean carbon cycle dynamics;
despite some local biases, the model captures the overall mean state,
seasonal cycle, and variability in carbon-related variables reasonably well.

◮ Anthropogenic CO2 uptake remains weak; the Southern Ocean is a prime
culprit. The representation of physical processes controlling ventilation
and subduction is likely the primary problem; biases at the sea surface
may also play a role—but are likely secondary to ventilation.
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