Mixing Processes and Ventilation in the CESM x3 Ocean Model: Influences on Biogeochemistry

> Associate Professor Keith Moore Department of Earth System Science University of California, Irvine

Collaborator: Markus Jochum, National Center for Atmospheric Research

Funding from the National Science Foundation

BGC Biases in the Standard CESM-BEC due to BGC and Physics

1) Low nutrient bias at high latitudes.

2) Oxygen Minimum Zones (OMZs) too large.

OMZs occur at mid-depths (~150-650m) where there is weak ventilation and a substantial flux of sinking organic matter, leading to depletion of $[O_2]$ to < 20 µM.

All simulations gx3v7 resolution, active ocean and sea ice, with strong surface salinity restoring, and normal year forcing. <u>Issues discussed are also present at x1 resolution.</u>

Standard Simulation STD:

standard release physics (cesm1.0.1)
 turned off scaling of denitrification
 increased remineralization lengthscale (+20m)

All other simulations include modified BGC code, which includes additional processes and optimization of prescribed remineralization curves as a function of depth.

Deep Ocean (>2075m) Ideal Age Distribution from STD model simulation after 2000 years.

200.

0.00

Years

Mean Ideal Age Below 2075m Global = 976 years Southern Ocean = 516 years North Pacific = 1408 years North Pacific age continuing to increase as simulation progresses.

Ideal Age Distribution from STD model simulation at 2000 years.

CFC apparent ages for the North Pacific in the Upper OMZ depth range are < 40 years, with highest values off Baja (Warner et al., 1996; Fine et al., 2001).CESM is not forming North Pacific IntermediateWater(NPIW) BGC biases linked to physical processes:
1) Weak vertical exchange at high latitudes.
2) Weak ventilation of oxygen minimum zones.

Modified Physics Simulation (MODPhys): 1) Imposed a minimum isopycnal mixing rate of 0.8e7 cm²/s, typically between 0.3-3.0e7 cm²/s. 2) Increased diapycnal mixing at high latitudes increase from 0.17 to 0.35 cm²/s 45-55N increase from 0.17 to 0.5 cm²/s ~45-55S additional increase in NW Pac and Lab Sea. 3) Increased critical Richardson number in KPP $(0.3 \rightarrow 0.5)$, acts to deepen mixed layers.

Isopycnal mixing rates at 150m depth

Minimum isopycnal mixing increased by a factor of ~ 2 to 0.8e7 cm²/s. Mixing rates not changed above this threshold.

Diapycnal mixing rates at 150m depth

Modified KV

Should there be stronger vertical mixing at high latitudes?

1) Missing NIW mixing

Standard CESM

- 2) Missing Langmuir mixing
- 3) Shallow mixed layer bias in KPP

Annual Mean Mixed Layer Depth (0.125 density diff)

Global bias = +4m, rmse= 23 Southern Ocean bias = -11m, rmse= 43 Mid-latitude bias = +9m, rmse= 12

Global bias = +10m, rmse=27 Southern Ocean bias = +2m, rmse= 51 Mid-latitude bias = +16m, rmse=13

STD CESM

MOD BGC

MOD BGC & Physics

Observed Nitrate WOA

Lower OMZ (364-671m)

STD CESM OMZ volume 282% Observed

MOD BGC, STD Physics OMZ volume 192% Observed

MOD BGC & Physics OMZ volume 130% Observed

WOA Observed O₂

Simulation: (year 250)	STDCESM	BGCMOD	BGCPHYSMOI
Temperature r, rmse (105m)	0.96, 2.7		0.96, 2.7
Temperature r, rmse (300m)	0.92, 2.0		0.92, 2.0
Salinity r, rmse (105m)	0.89, 8.0		0.89, 8.0
Salinity r, rmse (300m)	0.92, 7.0		0.92, 7.0
Drake Passage Transort (Sv)	179		188
Mixed Layer Depth bias, rmse	+4, 23		+10, 27
Southern Ocean ML bias, rms	se -11, 43		+2, 51
Surface Nitrate r, rmse	0.78, 1.1	0.84, 0.58	0.82, 0.50
Surface Phosphate r, rmse	0.76, 0.33	0.85, 0.36	0.85, 0.32
Oxygen (170-364m) bias, rms	e -17, 47	-10, 43	-7, 43
OMZ (170-364m) (% Vol)	198%	149%	130%
Oxygen (364-671m) bias, rms	e -23, 49	-12, 42	-7, 41
OMZ (364-671m) (% Vol)	287%	192%	131%
Denitrification (TgN/yr)	374	157	102
Nitrogen Fixation (TgN/yr)	253	134	113
Export Production (PgC/yr)	6.3	6.0	6.6

Conclusions

- 1) Ventilation of the mid-depth North Pacific is very weak, due to weak NPIW formation and isopycnal mixing.
- 2) This contributes to oxygen minimum zones that are much too large in CESM.
- 3) BGC mods and increased isopycnal mixing improve the OMZs considerably.
- 4) Nutrient flux to surface waters is weak in the subarctic North Pacific and throughout the Southern Ocean.
- 5) NIW mixing will help, but doesn't get the deep winter mixing in both regions, particularly the Southern Ocean.