Porting the MIT Marine Ecosystem Model into CESM

Nancy J. Norton, NCAR

In collaboration with

Stephanie Dutkiewicz and Oliver Jahn (MIT)

Keith Lindsay, Gokhan Danabasoglu, and Matthew Long (NCAR)

Where to Start?

Project Planning Infrastructure

 Project planning tools, create preliminary documentation, put documentation under revision control, plan documentation and code repository layouts

Discovery Phase:

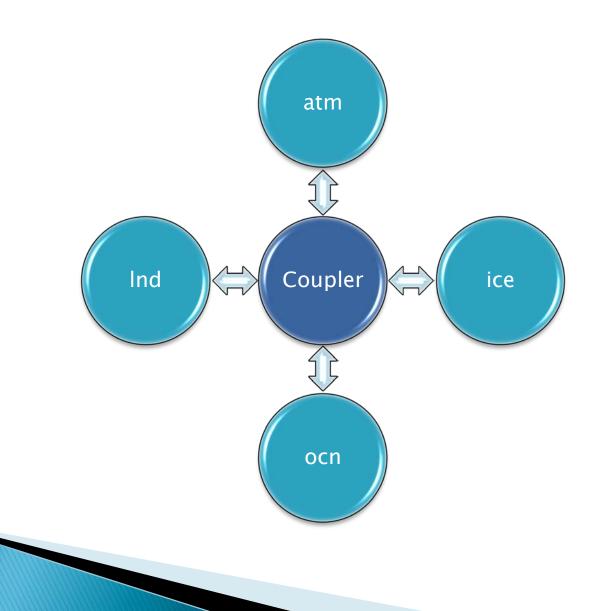
- Darwin is not a stand-alone model; it is an optional "package" available for use in the MITgcm
- Download MITgcm and Darwin code
- Review code
- Review MITgcm configuration and build methods

Code Analysis

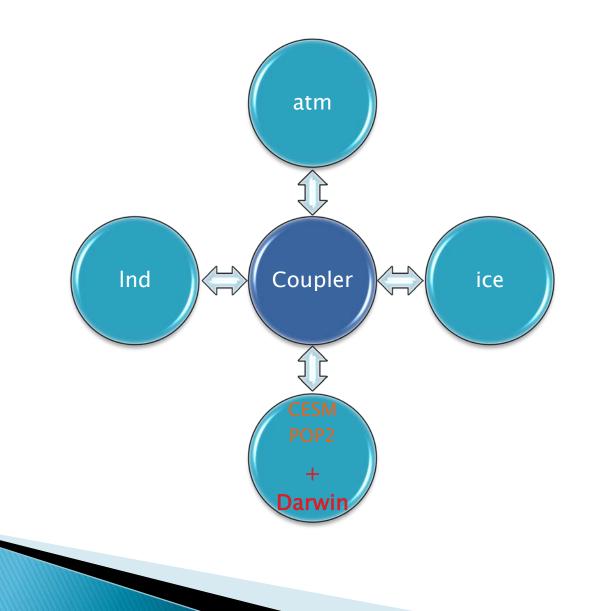
- Analyze general structure of Darwin
- Map out MITgcm infrastructure dependencies in Darwin (grids, I/O, communications, time/calendar)

Getting Started

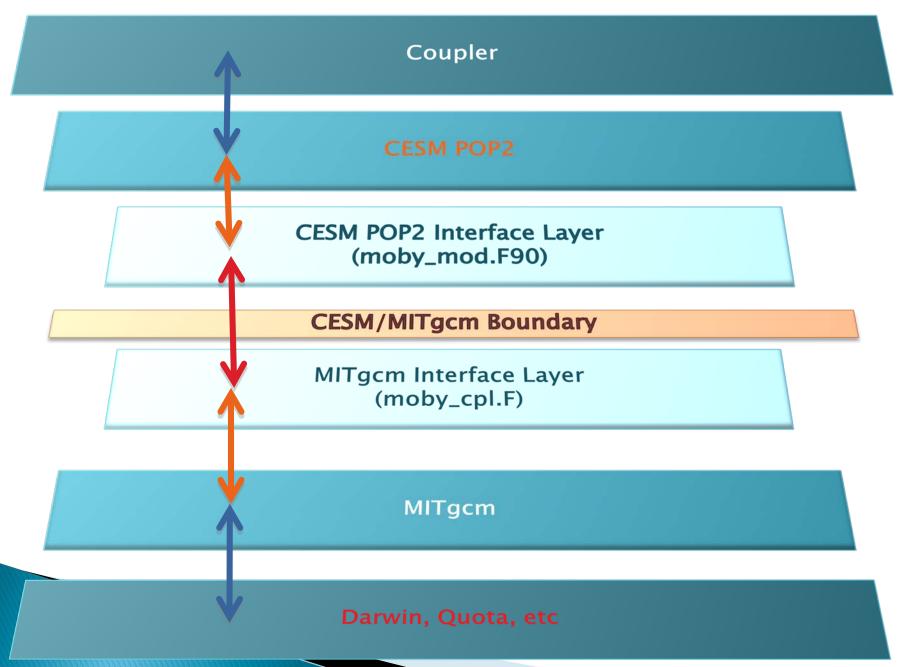
- Code Analysis Findings
 - Differences:
 - FORTRAN77 vs Fortran90
 - #include COMMON blocks vs "use module"
 - extensive use of Cpp options in MITgcm and Darwin; minimal use in POP2
 - Arakawa C vs B grids
 - Darwin tightly connected to MITgcm:
 - common variables
 - I/O
 - domain decomposition, communications and global operations (MPI)
 - grids
 - initialization
 - timestepping
 - clock/calendar


Design Decision

- Rewrite Darwin as a CESM POP2 module ("pop-ify"), or use Darwin as-is, in a library accessible from CESM POP2?
 - From an implementation viewpoint, each approach had roughly equal appeal:
 - Risks
 - Benefits
 - Technical challenges
 - But, looking to the future, replacing Darwin with Quota would be essentially "free" with the Darwin-as-a-library approach.
 - Chose the Darwin-as-a-library approach


So Now What?

- Develop a "mental model" of how to connect Darwin to CESM POP2
- Develop a simple proof-of-concept prototype
- If successful, gradually develop full functionality
- Develop + Test
- But first, a short detour...


Simplest Conceptual Model of CESM

CESM with Active Ocean + DARWIN

CESM POP/ MITgcm Marine Ecosystem Interface Diagram

Prototype Preparation

Establish Design Ground Rules

- Use CESM infrastructure for case setup, configuration, build, and execution
- Use CESM POP2 I/O, MPI communications, tracer support, grids, masking, and time-stepping
- As much as possible, use MITgcm code "as-is," but it's ok to modify MITgcm routines and "include files" (bypass certain parts, eg)
- All CESM MOBY modifications controlled by a single Cpp option, CESMMOBY
- Minimize mods to Darwin -- will make replacing Darwin with Quota easier

Prototype Development

Feasibility Exploration/Simple Prototype Development

- Set up a standard CESM test case
- Modify CESM scripts to assemble Darwin code, build and link Darwin library, and run code (challenge: moby.cpl7.template script)
- Create simplest interface routines to connect POP and Darwin
- "Hello world" success!
- Shared MPI communicator success! (one, then four ocean processors)
- Have confidence in approach. Now Build up Interface Routines

From Prototype to Working Model

POP2 Interface: moby_mod.F90

- Based on Keith Lindsay's ecosys_mod.F90
- Uses Keith's passive-tracer support
- Two classes of routines:
 - "moby_" routines hook into the CESM POP2 model in the same way as all other CESM POP2 passive-tracer routines.
 - "POP_moby" routines are the interface routines that reach across to the Darwin side to drive the Darwin model and to exchange information.

moby_mod.F90

Initialization

moby_init moby_init_tavg moby_init_sflux moby_init_interior_restore POP_mobyInit1 POP_mobyInit2

Information exchange

POP_mobySendTime

I/O

moby_write_restart

Science

moby_set_interior_3D moby_reset moby_set_sflux moby_tavg_forcing moby_global_tracer_volume extract_surf_avg comp_surf_avg POP_mobySurfaceForcingSet POP_mobyMeanArea POP_mobyCons

Misc

POP_mobyFinal POP_mobyConsistencyChecks

From Prototype to Working Model

- MITgcm/Darwin Interface: moby_cpl.F
 - Multiple subroutines in one file plus two include files
 - moby_cpl.F
 - CESM_CPL_PARAMS.h (CESM "shared constants")
 - CESM_EEPARAMS.h (CESM I/O; MPI support)
 - moby_cpl routines are called from moby_mod.F90 routines
 - Serve as drivers for MITgcm and Darwin routines
 - Exchange information (note: CESM POP2-centric "put" and "get")

moby_cpl.F

Initialization

moby_cplComm moby_cplInitLog moby_cplShrConstants moby_cplInitializeFixed moby_cplInitializeVaria moby_cplIniGrid moby_cplIniThreadingEnv

Science

moby_cpl_call_Darwin_forcing moby_cpl_call_Darwin_fe_chem moby_cplSurfaceForcingSet moby_cplSurfaceForcingResetFlags

Information exchange

Misc

moby_cplTime moby_cplWRAPPER (eeboot, the_model_main) moby_cplGetNumPTRACERS moby_cplGetInfoPTRACERS moby_cplGetInfoPtrIndices moby_cplGetInfoRatios moby_cplGetInfoOptions moby_cplGetPtracer moby_cplPutPtracer moby_cplPutPtracer moby_cplPutCSW moby_cplPut_hFacC moby_cplPutGSM moby_cplPutScalars moby_cplDocPtracers moby_cplConsistencyChecks moby_cplFinal moby_cplFlush

Testing

Software Engineering Tests

- Exact restart
- CESM DEBUG initializes all model fields to NaNs, traps underflows, overflows, and illegal operations, and activates bounds checking.
- Stability (1 year; long-term problems?)
- Memory leak (no memory growth)
- Memory scaling (with more processors, memory should scale accordingly)
- Domain decomposition
- Timing: efficiency
- Timing: scaling
- Can Use the CESM test suite to run MOBY tests
- Scientific Validation
 - To be determined (soon)

Setting Up a New CESM MOBY Experiment

- Customize a version of CESM1
 - Check out copy of CESM1 from NCAR development repository
 - Swap out pop2 and scripts
- Set up a new MOBY case using standard CESM1 procedures
 - Presently, just the "ocean-only" version is supported, but implementing support for MOBY in the fully coupled version is straightforward
 - In the next slide, only the compset **CDARWIN** is nonstandard

Setting Up a New CESM "Ocean-Only" with DARWIN Case

- 1. cd \$CESM_MOBY/scripts
- create_newcase -compset CDARWIN -res T62_gx3v7 -mach bluefire -skip_rundb -case \$CASEDIR/\$CASE
- 3. cd \$CASEDIR/\$CASE
- 4. configure -case
- 5. ./\$CASE.build
- 6. bsub < \$CASE.bluefire.run

Next Steps

- Initial Conditions
- Final Round of Software Engineering Tests
- Final Walkthrough
- Scientific Validation