Arctic Synoptic Regimes: Comparing domain wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics

Neil P. Barton Stephen A. Klein James S. Boyle Yuying Y. Zhang

02/17/2012 CESM-PCWG Meeting Boulder, CO

Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory LLNL-PRES-528380

Motivation

Arctic Average Comparisons

Bridging the gap: Analyze GCM Arctic cloud production over a large domain with a knowledge of the dynamics.

Case Study Comparisons

Gettelman et al. (2011)

Data and Models

- Analysis and Model Initialization Data
 - ECMWF Year of Tropical Convection (YOTC) Analysis; ERA-YOTC
 - April 2008 to February 2010
 - Interpolated to 3 hour temporal resolution (original 6)
 - Interpolated to 1.25° Longitude by 0.94° Latitude
- Cloud Data
 - GCM Oriented CALIPSO Cloud Product
 - Cloud fractions calculated along-track at 3-hour temporal resolution
 - About 2 passes every 3 hours
- CAM4 and CAM5 run in *forecast* mode
 - Initialized from the ERA-YOTC analysis, Reynolds SSTs, and NCEP sea-ice
 - CALIPSO cloud simulator
 - Day 2 output analyzed

Synoptic Regimes: A *K*-means clustering approach

• Largely followed Rossow *et al.* 2005 to determine number of clusters

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

Frequency of Occurrence: HS = 36%, S = 29%, VHS = 24%, UL = 11%

• Assigned GCM clusters by determining the minimum Euclidean distance between the ERA-YOTC cluster centroids and the $\theta_{700}-\theta_{LML}$ and ω_{500} in the GCMs

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

LWPs

Eureka, Canada	Observations (g m ⁻²)	CAM4 (g m ⁻²)	CAM5 (g m ⁻²)
HS	16.4	69.4	15.5
S	30.8	200.5	21.7
VHS	6.4	22.1	0.0
UL	64.9	220.2	6.1

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

Is the Cloud Response to Changes in Sea Ice dependent on the Thermodynamics and Dynamics?

Cloud Fractions

Conclusions

- *K-means clustering* technique successfully separated *distinct Arctic synoptic regimes*.
- CAM4 and CAM5 lower tropospheric stabilities were larger than ERA-YOTC in the day 2 forecast.
- Cloud response to the removal of sea ice is dependent on the overlying thermodynamics.
- The *improved* boundary layer turbulence and cloud microphysics scheme in *CAM5* resulted a better *boundary layer cloud* compared to CAM4.

Thank You/Questions?

Neil P. Barton

LLNL, PCMDI

Recently submitted to JGR

barton30@IIIn.gov