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Motivation
• Quantifying the temperature 

sensitivity between the CO2 
and non-CO2 forcings 
important for Cenozoic 
climate intervals like the 
middle Eocene (~45 mya), 
Eocene/Oligocene Transition 
(~35 mya), and middle 
Miocene (~15 mya).

Zachos et al., 2001
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NCAR CESM1.0.3
• We use the newest model released from the National 

Center for Atmospheric Research (NCAR), the 
Community Earth System Model (CESM1.0.3) 
(http://www.cesm.ucar.edu/models/cesm1.0/). 

• We conduct a series of fully coupled and slab ocean 
simulations for the Eocene at varying resolutions.

•  We conduct a series of slab simulations for the 
Miocene at 1.9x2.5 degree resolution.
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Completed Eocene 
Modeling Simulations

Compset Resolution CO2 Equilibrated? Boundary Change

B (CAM4) T31 560,1120,2240 >1700 years Antarctic ice sheet

E (CAM4) T31 560,1120,2240,4480 yes Antarctic ice sheet

E (CAM4) T85 1120 yes Antarctic ice sheet

E (CAM4) 1.9x.25 560,1120,2240 yes Antarctic ice sheet, 
aerosols, methane
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Eocene Coupled Model Comparison: CO2

CESM1.0.3 versus CCSM3

2240 ppm - 1120 ppm CO2 

2240 ppm CO2 

1120 ppm CO2 

CESM1.0.3 Sensitivity
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Eocene: Antarctic Glaciation
• Place a modern size Antarctic ice sheet 

(topography, SGH30,SGH, and albedo) into 
Eocene control simulations. Below are Anomalies.  

E_T31 1120 E_T85 1120

B_T31 1120E_2x2 1120

-
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Eocene Slab Model: Antarctic 
Glaciation -

-0.19 1.26

Figure 4.  (a) Annually averaged surface 
temperature anomalies (K) and annually averaged 
total cloud forcing (longwave cloud forcing 
(LWCF)+shortwave cloud forcing (SWCF)) in 
W/m2 (b), (c) normalized ga (greenhouse effect 
without clouds) anomaly in % . 
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Shortwave Cloud Forcing 
Anomalies Cloud fraction anomalies and 

uplift/subsidence regions around 
Antarctica

Eocene Slab Model: Antarctic Glaciation
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Radiative Impact

Eocene

future

Eocene

future
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Results Eocene CAM4/CAM5
• Coupled model shows roughly a ~3K per 

doubling of CO2 warming.

• Slab model using CAM4 has a 3.5K per 
doubling of CO2 warming.   

• Adding Antarctic glacier into Eocene induces a 
global cooling signal from (-0.19 to -1.8 K).

• Prescribed aerosols using bulk aerosol mode 
(BAM) approach warm the Eocene ~0.3K.  
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 Miocene Sensitivity: Topography

“greenhouse” 
topography

original topography low topography

original topography

original topo minus low topo

original topo minus greenhouse topo

“Miocene greenhouse topography”-Pollard and 
DeConto, 2009
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Miocene Sensitivity

BAM prescribed Aerosols versus PI 
prescribed aerosols.  Used workflow 
developed by Christine Shields

Miocene 560 “original-higher 
topography” minus “lower” topography 
and less glacier in Antarctica

Aerosols Less Antarctic Glacier

2x pre-industrial CH4
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