

CCSM4 Last Millennium and proxy comparisons

Laura Landrum¹ with Bette L. Otto-Bliesner¹, Eugene R. Wahl², Andrew Conley¹, Peter J. Lawrence¹, Nan Rosenbloom¹ and Haiyan Teng¹

National Center for Atmospheric Research
 NOAA's National Climate Data Center, Paleoclimatology Branch

CCSM4 Last Millennium – data comparison

• Background (brief!)

Model-proxy comparisons:

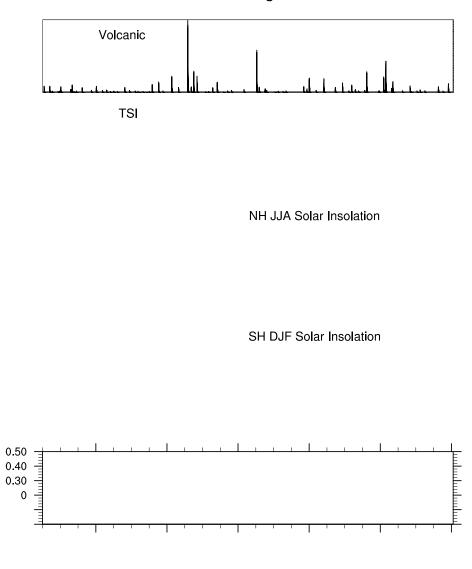
- 850-2005 CE temperature record
- Medieval Climate Anomaly (950-1250 CE) into the Little Ice Age (1450-1750 CE)
- Response to Volcanoes
- Modes of Variability (PDO, ENSO, AMO and NAO)

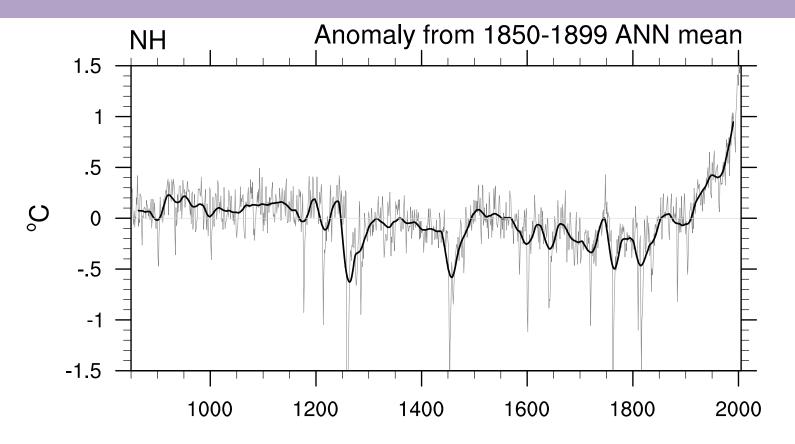
CCSM4 Last Millennium Background (brief!)

- part of the IPCC CMIP5/PMIP3
- Community Climate System Model version 4 fully coupled atmosphere, ocean, sea-ice, land model at nominal 1° resolution
- Forcings per PMIP3 protocols, and merged with those used in CCSM4 CMIP5 20th Century runs (with exception of orbital parameter)

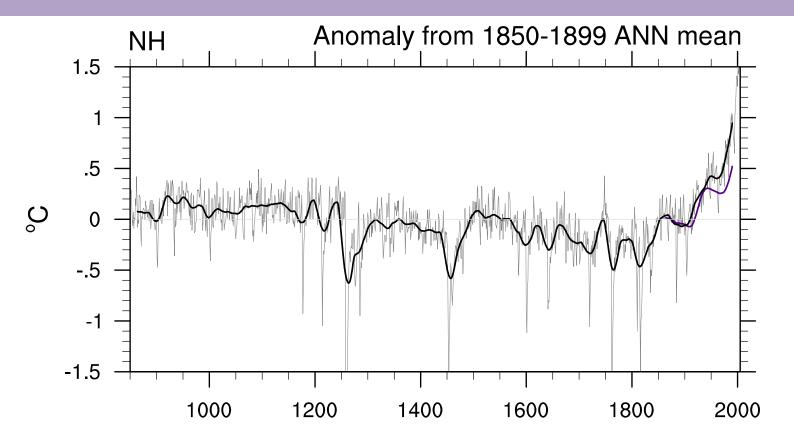
LM prescribed forcings

 forcings and boundary conditions follow the protocols of PMIP3 (Schmidt et al., 2011)


[https://pmip3.lsce.ipsl.fr/wiki/doku.php/pmi p3:design:lm:final]

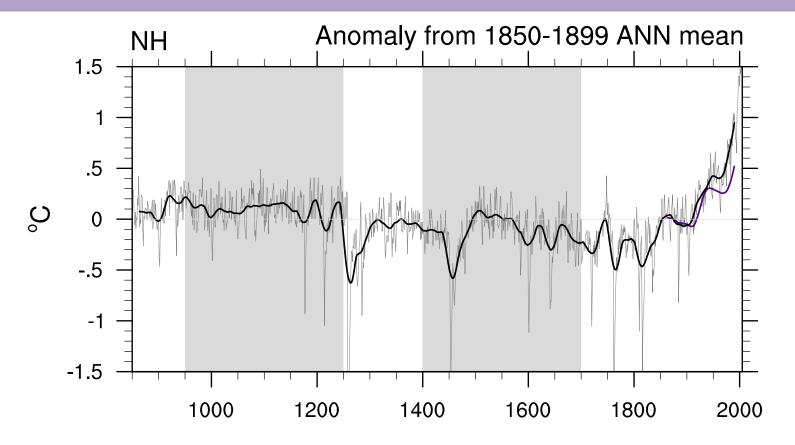

 Two LM extensions to 2005: both adopt the same time-dependent datasets as the CCSM4 20th century simulations; one includes variations in incoming solar radiation due to orbital variations, (not standard CMIP5).

PMIP3 Forcings

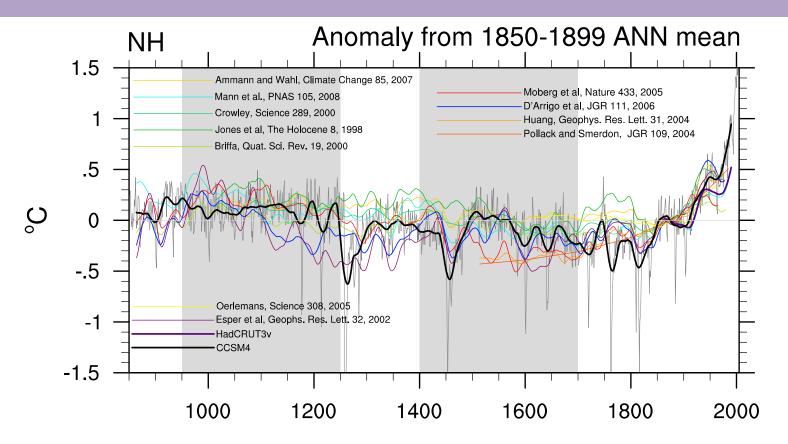


- Annual values in light grey; 30-year Gaussian smoothed in heavy black
- Cooling ~0.5° C 850-1800

- Steep warming ~1.5° C, 1850-2005 (~1.4° C in 20th C)
- Strong cooling with large volcanic events

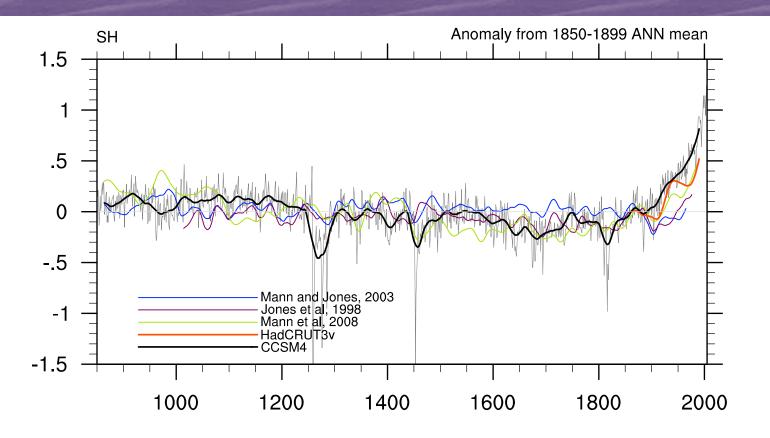


- Annual values in light grey; 30-year Gaussian smoothed in heavy black
- Cooling ~0.5° C 850-1800
- Steep warming ~1.5° C, 1850-2005 (~1.4° C in 20th C)
- Strong cooling with large volcanic events
- 20thC warming exceeds instrumental record



- Annual values in light grey; 30-year Gaussian smoothed in heavy black
- Cooling ~0.5° C 850-1800

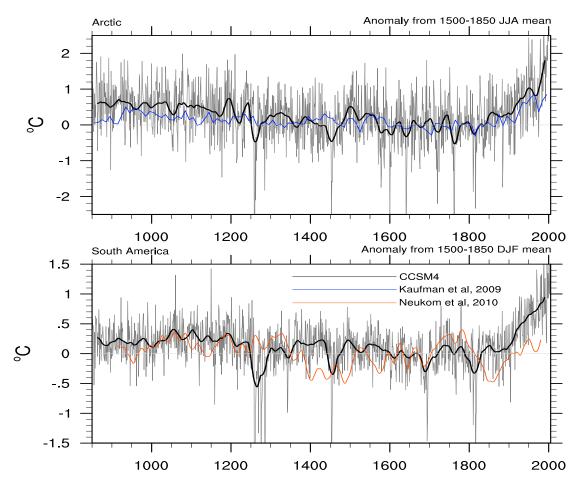
- Steep warming ~1.5° C, 1850-2005 (~1.4° C in 20th C)
- Strong cooling with large volcanic events
- 20thC warming exceeds instrumental record
- LM warmer during MCA (950-1250 CE) than LIA (1450-1750 CE)



- Annual values in light grey; 30-year Gaussian smoothed in heavy black
- Cooling ~0.5° C 850-1800

- Steep warming ~1.5° C, 1850-2005 (~1.4° C in 20th C)
- 20thC warming exceeds instrumental record
- Strong cooling with large volcanic events
- LM warmer during MCA (950-1250 CE) than LIA (1450-1750 CE)
- Large range in proxy records, particularly 1200-1450 CE

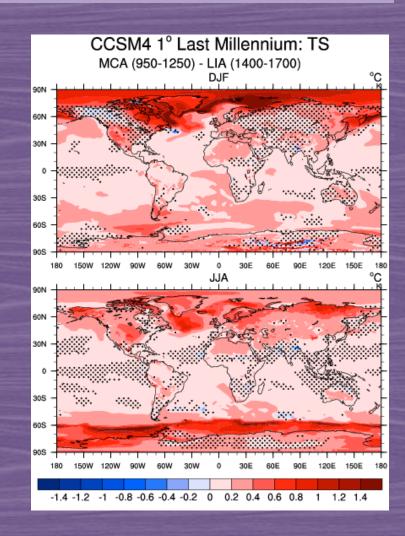
SH Temperature records



Less cooling (~0.3° C 850-1800) than NH

- Steep warming ~1.2° C, 1850-2005, which exceeds instrumental record
- Cooling response to large volcanic events smaller than in NH
- Reasonable agreement with smaller # of proxy records

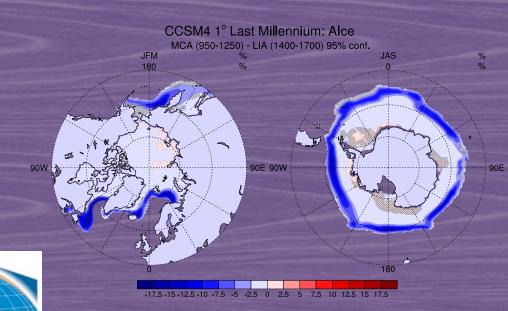
Land Temperature records: Arctic and South America

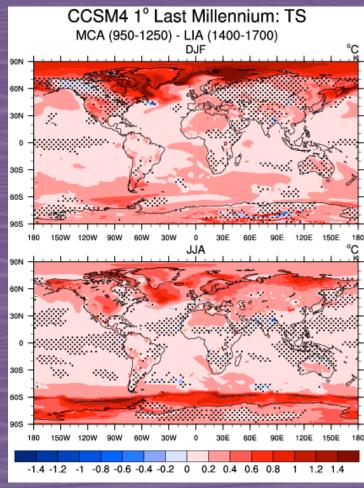

N E S L

DDRR HIM OF OWNER

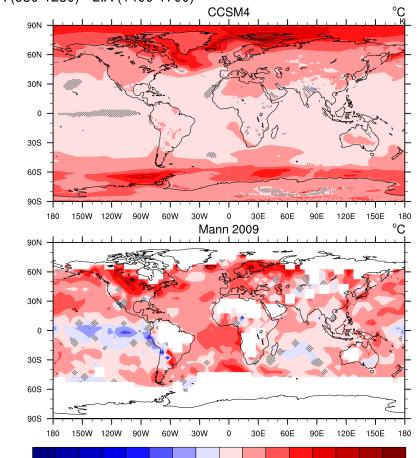
- Kaufman inferred long-term cooling in NH to 19th C due to insolation (orbital: decreased boreal summer insolation) – supported by LM simulation
- LM warmer in 20th C in both Arctic and S. American regions than proxies
- Less coherence in S. American regional record than overall SH between LM and proxy record
- South American record (Neukom et al., 2010) – spatially limited 20° -55° S; 30° -80° W

Medieval Climate Anomaly (950-1250 CE) into the Little Ice Age (1450-1750 CE)


- Mean boreal winter (DJF) and summer (JJA) surface temperature change: TS_{MCA} – TS_{LIA}
- Amplified polar response, particularly in winter hemisphere
- Reduced seasonal contrast in Polar latitudes (persistence of Greenland settlements in MCA – McGovern, 1991)



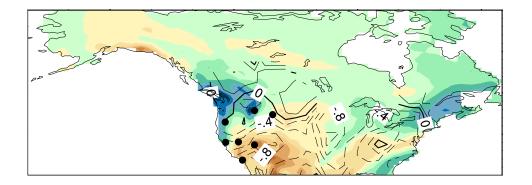
Medieval Climate Anomaly (950-1250 CE) into the Little Ice Age (1450-1750 CE)


- Mean boreal winter (DJF) and summer (JJA) surface temperature change: TS_{MCA} – TS_{LIA}
- Amplified polar response, particularly in winter hemisphere
- Reduced seasonal contrast in Polar latitudes (persistence of Greenland settlements in MCA – McGovern, 1991)
- Reduced sea ice (SIE_{MCA} SIE_{LIA} in %)

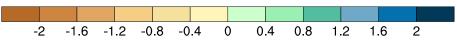
MCA- LIA Temperature records: models and reconstructions

CCSM4 1° and CSM1.4 Last Millennium runs: ANN TREFHT MCA (950-1250) - LIA (1400-1700)

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4


NES

CCSM4 (upper) and Multi-proxy reconstruction of Mann et al, 2009 (lower)


- Higher spatial variability in proxy reconstruction
- LM simulations do not show cooler equatorial Pacific

CCSM4 1° Last Millennium: P-E MCA (950-1250) - LIA (1400-1700)

CONTOUR FROM -2 TO 2 BY .2

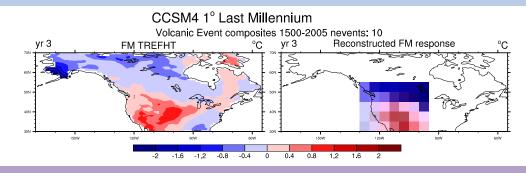
MCA- LIA hydroclimate

- Few regions show robust precipitation changes in LM simulation
- North America regions of >90% conf. level changes in precipitation-evaporation
- Excellent regional proxy records (North American Drought Atlas, Cook et al, 2004; Cook, 2008)
- LM simulations general agreement with proxies – SW US dry Medieval (winter) and dry NE US (summer)
- LM simulation shows dry SW US but does NOT simulation La Nina type conditions in equatorial Pacific

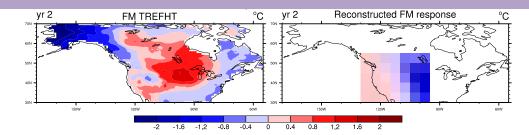
CCSM4 Last Millennium: Response to Volcanic events

 Compare model response to proxy-based reconstruction response for: North America (Wahl and Amman, 2010)

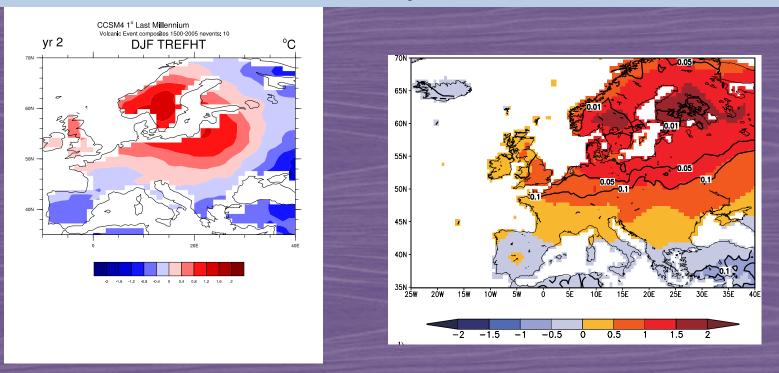
Europe (Fischer et al, 2007)

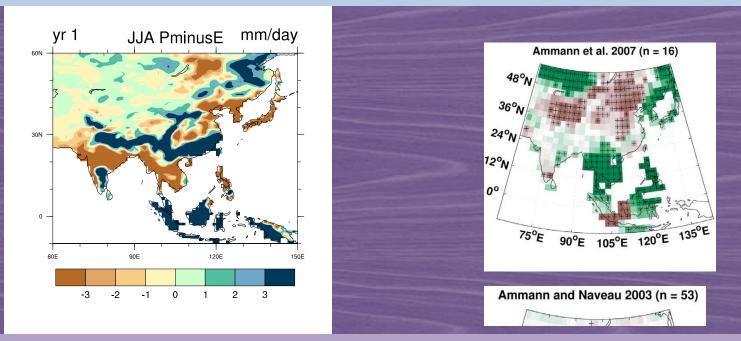

Asia (Anchukaitis et al, 2010)

- Superposed Epoch Analysis (SEA; see Adams et al., 2003)
- Mean response to 10 events (1500-1850 as in proxy reconstructions) as a deviation from 10 year mean state before an event
- yr0 = event year; yr1 = 1 year post event, etc.



N. America Temperature response to Volcanoes


- FM response, post-event year 3
- Proxy-reconstruction: "La Nina" type pattern with SW US warming and cooling to the North and mid-continent
- LM simulation shows general agreement in yr3, although no mid-continental cooling.
- LM simulations show discrepancies in yr2 compared with proxy-based reconstructions


Temperature response to Volcanoes: Europe

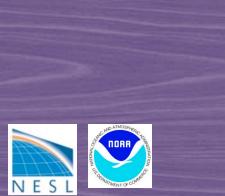
- DJF response, post-event year 2 from CCSM4 LM simulation (left) and Fischer (2007) post-event year 1 (right)
- Similar patterns; timing is off (yr2 in CCSM4, yr1 in reconstructions)

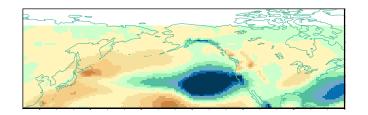
Precipitation response to Volcanoes: Asia

- JJA response, yr1, from CCSM4 LM P-E (left) and response of PDSI of the Monsoon Asian Drought Atlas (Cook et al., 2010; figure from Anchukaitis et al., 2010)
- CCSM response similar to observed anomalies of precipitation, runoff and PDSI after Pinatubo (not shown) after adjusting for 1992 El Nino (Trenberth and Dai, 2001)
- Very little resemblance to pattern made from proxy reconstructions in Anchukaitis et al (2010).

CCSM4 Last Millennium and data comparisons: Modes of Variability

- Modes of variability influence regional climate on seasonal to multi-decadal timescales
- Does the short instrumental record represent full range of variability in these modes?
- Do these internal modes show changes with external forcing?
- How does the LM simulation compare to "reconstructions" of these modes based on proxyrecords of climate and modal-teleconnections and indices calibrated using the relatively short instrumental record?


PDO and ENSO


PDO

Proxies calibrated with 20thC obs: consistent in 20thC but not coherent before that
Decadal variations – internal dyn.
Model and proxies – prolonged periods of -/+ PDO

Nino3.4

•Increased variability 20thC (proxy) and 1250-1500 (CCSM4 – wavelet analysis, not shown)

2005)

NAO and AMO

NAO

Influences location of jet stream and storm tracks:
+NAO wetter and warmer
N. Europe, drier and colder
S. Europe/N. Africa
Not + during MCA in model (as suggested by Trouet recon.)
Lack of coherence in proxy-recon.
AMO
SST based multi-decadal mode
Regressions of precip and temp show some similarity

to regressions on NAO

•Lack of coherence in proxy recon

•LM simulation – +AMO tendency MCA; - LIA

Summary

- CCSM4 LM simulation shows a "hockey-stick"-like pattern of surface temperatures: ~0.5(0.3)/° C cooling to the early 1800's for the NH(SH) followed by warming to present.
- 20th century temperatures are much warmer than MCA temperatures
- The relative warmth exhibited by proxy reconstructions during the MCA (11th-12th centuries) is somewhat damped in the LM simulation
- Strong global cooling associated with large volcanic events
- LM captures some of the European and North American response to volcanic events, but timing and regional details are dissimilar
- LM shows overall warming with polar amplification in MCA relative to LIA
- LM does not reproduce a La Nina type response in equatorial Pacific during MCA
- Overall lack of coherence between CCSM4 modes of variability and proxy-based indices, as well as between different proxy based modes over LM prior to instrumental record
- LM does not show a persistent positive NAO or negative PDO during MCA as suggested by proxy reconstructions

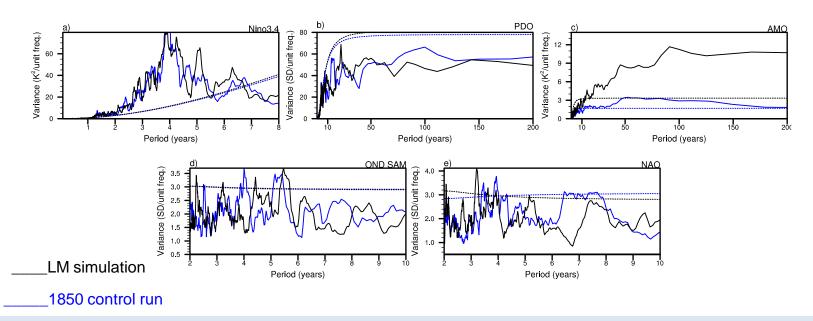
The NESL Mission is:

To advance understanding of weather, climate, atmospheric composition and processes; To provide facility support to the wider community; and,

To apply the results to benefit society

NCAR is sponsored by the National Science Foundation

This work is supported by the National Oceanic and Atmospheric Administration


LM modes of variability

- **AMO**: Atlantic Multidecadal Osc illation (area weighted, detrended North Atlantic SST)
- NAO: North Atlantic Oscillation (leading order EOF of DJFM North Atlantic SLP)
- **PDO**: Pacific Decadal Oscillation (leading order EOF of North Pacific SSTs with global trends removed)
- Nino3.4 index (area-weighted monthly SST from 5°S-5°N and 120-170°W, long-term monthly means removed)
- OCT SAM: Southern Annular Mode (leading order EOF of October Southern Hemisphere SLP)

Modes of Variability: control run vs transient forcing

- ENSO: slight increase in variance in LM (1.20 ° C²) from control run (1.10 ° C²)
- PDO: similar power spectrum LM and 1850 control
- AMO: increased variance in LM (0.161 ° C²) compared to 1850 control run (0.121 ° C²)
- NAO and SAM: generally white spectrum, little change b/w control run and LM

