Getting faster integration rates for paleoclimate simulations

Dr. Richard Loft Director, Technology Development Computational and Information Systems Laboratory NCAR

> **CESM PCWG** Feb 17, 2012

aboratory

Informati

What I think I know about paleoclimate simulation

- Paleoclimate (PC) runs at lower resolution for longer periods than typical runs of IPCC.
 - O(10,000) year runs have been performed
 - 100 years/day vs 5 years/day
 - Resolutions coarser than 1 degree
- Because of this, parallelism is a challeng.
- It generally is thought to runs best on fewer/faster processors.

Some good news for paloeclimate on Yellowstone

- Yellowstone's Intel SB-EP processor cores ought to offer users about 50% more throughput than bluefire POWER-6 cores.
- Vendor benchmark result: CAM 0.25° on 1000 cores gets ~3.0 years/day on the previous generation of hardware.
- Working backward to a 1° PC, that should reach 200 years/day on 64 processors of Yellowstone.

Computer architectures are turning to massive numbers of slower threads. Why?

- Since 2005 processor clock speeds have stagnated
- Why? Power consumption of high-GHz silicon
- Many-core design emphasizes executing many concurrent threads slowly, rather than executing a single thread very quickly.
- Where are we going? processors with hundreds of cores and thousands of threads

What comes after Yellowstone: Path to the Exascale (10¹⁸ flops)

oratory

-0			
System	Terascale (HPCx 2002)	Petascale (Jaguar 2009)	Exascale (DARPA strawman)
# of nodes	160	18,688	223,872
# cores/ node	8	12	742
# of cores	1280	224,256	166,113,024
# racks	40	284	583
Total Mem (TB)	1.28	300	3,580
Disk (TB)	18	600	3,580
Tape (TB)	35	10,000	3,580,000
Peak (Petaflop/s)	0.0067	2.33	1000
Total Power (MW)	0.5	7.0	68
Gflops/W	0.013	0.33	14.73
Bytes/Flop	0.5	0.2	0.0036

ait: wirke Ashworth, SIF

J. Darespur

Why we're turning to many-core: Energy to do a double precision FLOP

- Blue Fire (649 KW/59.7 TFLOPS)
 - 10,873 pJ/FLOP
- Yellowstone (1.9 MW/1.5 PFLOPS)
 - 1,490 pJ/FLOP (huge improvement!)
- Many-core systems:
 - IBM Blue Gene/Q: 501 pJ/FLOP
 - NVIDIA KEPLER GPU: 200 pJ/FLOP (estimated)
 - Exascale target (DARPA): 68 pJ/FLOP = 68 MW system

Another Complication: The heterogeneous, co-processor node architecture

7

How to talk to coprocessors

8

The Current Candidates...

BG/Q Cores: 16 Multithread: 4-way Coprocessor: no Boot Linux: yes

NCAR

Knights Ferry Cores: 32 Multithread: 4-way Coprocessor: yes Boot Linux: yes Fermi Cores: 512 Multithread: 32-way Coprocessor: yes Boot Linux: no

First Porting Model: Dynamics First

lost Implementations Focus on Dynamical Core

Second Model: Conventional Processor as

Communication Co-Processor

- Invert traditional "GPU-as-co-processor" model
 - Model state "lives" on GPU
 - Initial data read by the CPU and passed to the GPU
 - Data passed back to the CPU only for output & message-passing
 - GPU performs all computations
 - Fine-grained parallelism
 - CPU controls high level program flow
 - Coarse-grained parallelism

Minimizes overhead of data movement between CPU & GPU

Systems Laboratory

Reality: where are we with many-core on the Gartner Hype cycle ?

Reality: where are we with many-core on the Gartner Hype cycle ?

We need an integrated assessment of CESM's many-core path forward:

CESM Science Objectives

CESM Model Component Directions

Software Programming Models

Disruptive Technologies

CESM Disruptive Technology Working Group?

Ideas for Special Purpose Paleoclimate Systems

- Can Paleoclimate simulations ultimately fit on a single card?
 - Forget MPI in this case, use threads
- To go fast you need to maximize local memory bandwidth
 - Graphics cards have very fast GDDR memory
 - Stacked (3D) memory in development for exascale

Stacked memory metaphor

This is hopefully the start of a broader discussion with the Paleoclimate community...

Thanks!

computational & Information Systems Laboratory