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What I think | know about
paleoclimate simulation
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e Paleoclimate (PC) runs at lower resolution
for longer periods than typical runs of IPCC.

— 0(10,000) year runs have been performed
— 100 years/day vs 5 years/day
— Resolutions coarser than 1 degree

e Because of this, parallelism is a challeng.

Computational & Information Systems

e It generally is thought to runs best on
fewer/faster processors.
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Some good news for paloecli

on Yellowstone

e Yellowstone’s Intel SB-EP processor
ought to offer users about 50% mor
throughput than bluefire POWER-6 ¢

e Vendor benchmark result: CAM 0.25
1000 cores gets ~3.0 years/day on th
previous generation of hardware.

m e Working backward to a 1° PC, that s
E reach 200 years/day on 64 processol
Yellowstone.
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Computer architectures are turning
to massive numbers of slower
threads. Why?

e Since 2005 processor clock speeds have
stagnated
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e Why? Power consumption of high-GHz silicon

e Many-core desigh emphasizes executing many
concurrent threads slowly, rather than
executing a single thread very quickly.
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e Where are we going? processors with
hundreds of cores and thousands-of.threads
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What comes after Yellowston
Path to the Exascale (102 flop

n NCAR @ Credit: Mike Ashworth; STFC, Dare'sb":_l;g .

System Terascale Petascale Exascale
(HPCx 2002) (Jaguar 2009) (DARPA strawman)
# of nodes 160 18,688 223,872
# cores/ node 8 ]2 742
F of cores 1280 224,256 166,113,024 p—
# racks 40 284 583
Total Mem (TB) 1.28 300 3,580
Disk (TB) 18 600 3,580
Tape (TB) 35 10,000 3,580,000
Peak (Petaflop/s) 0.0067 2.33 1000
al Power (MW) 0.5 7.0 68 g

flops/W 0.013 0.33 14.73 -

Bytes/Flop 0.5 0.2 0.0036




Why we’re turning to many
Energy to do a double precisi

.® Blue Fire (649 KW/59.7 TFLOPS)
— 10,873 pJ/FLOP

e Yellowstone (1.9 MW/1.5 PFLOPS)
— 1,490 pJ/FLOP (huge improvement!)

“e Many-core systems:

& — |BM Blue Gene/Q: 501 pJ/FLOP
wg, — NVIDIA KEPLER GPU: 200 pJ/FLOP (es_.ti
@ — Exascale target (DARPA): 68 pJ/FLOP”:}"-

BANCAR

Information Systems Laboratory

St-




Another Complicatio
The heterogeneous, co-prc
node architecture

Conventional
Multicore
Processor

Co-Processor
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DRAM

PCIl Bus

NCAR &




How to talk to copro

Memory
for GPU

-
Execute parallel
in each core

Processing flow
on CUDA
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Cores: 16
Multithread: 4-way
Coprocessor: no
Boot Linux: yes
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Knights Ferry
Cores: 32
Multithread: 4-way
Coprocessor: yes
Boot Linux: yes

NVIDIA.
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First Porting Model: Dynamics First

lost Implementations Focus on Dynamical Core >

nviol

Application Code

-

Rest of Code

Dznamics l

GPU Use CUDA to Parallelize
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Second Model:
Conventional Processor ¢

Communication Co-Proces

Invert traditional “ GPU-as-co-pro
model

— Model state “lives” on GPU

— Initial data read by the CPU and passe

— Data passed back to the CPU only for
message-passing

— GPU performs all computations
* Fine-grained parallelism

= — CPU controls high level program flow
2 « Coarse-grained parallelism

% Minimizes overhead of data move
U between CPU & GPU ~
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Reality: where are we with m
on the Gartner Hype cycl

VISIBILITY

Peak of Inflated Expectations

(6)
Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

TIME
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We need an integrated asses

CESM’s many-core path fo

CESM Science Objectives

CESM Model Component Directions

Software Programming Models

Disruptive Technologies
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Ideas for Special Purpo
Paleoclimate System

e Can Paleoclimate simulations ult
on a single card?

— Forget MPI in this case, use threads

e To go fast you need to maximize
memory bandwidth

— Graphics cards have very fast GDDR
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— Stacked (3D) memory in developme
exascale




Stacked memory m
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This is hopefully the start
discussion with the P
community.

Thanks!
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