Evaluating climate sensitivity on different time scales and its relation with base climate

Jiaxu Zhang¹, Zhengyu Liu¹, Bette Otto-Bliesner² and Esther Brady²

University of Wisconsin-Madison
National Center for Atmospheric Research

Outline

- Motivation
- Model and experiment setup
- Climate sensitivity and base state
- Climate sensitivity and time-scale
- Summary and discussion

1. Introduction

- Climate model sensitivity to CO₂ doubling: 1.5-4.5 °C
- Deficiency of instrumental observations
- Alternative: to use paleoclimate reconstructions, e.g. LGM and YD
- Two issues:
 - 1) How much is the sensitivity derived from the glacial climate representative of the modern warm climate?
 - \rightarrow "base state issue"
 - 2) How to relate the long-term climate sensitivity to the short-term one?
 - \rightarrow "time-scale issue"

(Ruddiman, 2008)

2. Model and experiment setup

Trace21 transient simulation

- CCSM3, T31x3
- Time-varing a) greenhouse gases, b) solar insolation, c) ice-sheet topography and d) meltwater discharge
- Covers 22ka-0ka

Sensitivity Experiment setup

- Branched from three different base states of Trace21 (LGM, YD and PI)
- Instantaneous doubling of CO₂
- Integrated for 90 yr

 $\Delta Q = \Delta F - \alpha \Delta T S$

- ΔQ net heat flux anomaly at the top of atmosphere (TOA)
- ΔF net radiative forcing
- $\Delta TS global mean surface temperature change$
- α climate feedback parameter (W m⁻²/K), equals to $\Delta F/\Delta TS$ at equilibrium, when $\Delta Q = 0$.
- Gregory et al. (2004) proposed a method to find ΔTS at equilibrium, by regressing ΔQ against ΔTS to obtain a 'projected' equilibrium temperature change, ΔTS_{eqr} , as the ΔTS -intercept of the regression line found by least squares fit (ie, where $\Delta Q=0$).

- Feedback coefficient (α) does not rely on base states.
- Climate does respond in different speeds with different base states
 - → key to short-term climate sensitivity, because we care about "how fast" the climate responds in the next few decades.
- Why does glacial climate respond faster?

- Average of the last 40 yr (total is 90 yr)
- Polar amplification
- Response in tropics is virtually identical for three cases, despite dramatically different base states.
- LGM-2CO2: stronger response in SH
- YD-2CO2: stronger response in NH

	PI	LGM	YD
$CO_2(ppmv)$	280	185	240
AMOC (Sv)	11.1	12.6	4.0
A_{qlobal} (%)	43.7	62.8	52.3
A_{arc} (%)	62.6	60.3	77.0
A_{ant} (%)	33.1	63.9	39.3
ΔT_{global} (°C)	1.92	2.23	2.25
ΔT_{arc} (°C)	4.49	4.33	5.46
r_{arc}	2.34	1.94	2.43
ΔA_{arc} (%)	-8.49	-8.33	-14.85
ΔT_{ant} (°C)	1.38	2.60	1.68
r_{ant}	0.72	1.17	0.75
ΔA_{ant} (%)	-4.18	-9.57	-5.15

(Ruddiman, 2008)

4. Climate sensitivity and time scale

HadCM3

CCSM3 T31x3

4. Climate sensitivity and time scale

4. Climate sensitivity and time scale

- 300 yr regression: $\alpha \approx 0.47$
- 1000 yr regression: $\alpha \approx 0.40$
- 3000 yr regression: $\alpha \sim 0.21$
- Feedback coefficient becomes smaller when estimated over longer time-scale (with the same forcing).
- Small α implies larger Δ TS.

 $\Delta Q = \Delta F - \alpha \Delta T S$

- Short-term feedbacks: changes in water vapor, clouds, snow and sea ice
- Long-term feedbacks: dynamic vegetation, ocean circulation (melting water), ice sheets.
- Using LGM data to constrain model performance?

5. Summary and discussion

- Short-term climate feedback coefficient (α) does not rely on base states.
- Glacial climates respond to CO₂ doubling faster than warm climates, due to different sea ice extent.
- Long-term (millennium) sensitivity is twice the size of shortterm (centennial) sensitivity based on Trace21 simulation.

