Update (final word?) on Analysis of High-resolution Climate Simulations using FV-CAM

Many in *AMP/CGD NCAR* Michael F. Wehner *DOE LBNL*

AMWG Meeting, Boulder CO, 11 February 2013

Model Runs

- 4 AMIP-style integrations using observed SSTs 1979-2005, FV dynamical core
 - CAM4: 0.9°*lat* x 1.25°*lon*, and 0.23°*lat* x 0.31°*lon*
 - CAM5: 0.9°*lat* x 1.25°*lon*, and 0.23°*lat* x0.31°*lon*
- A few short integrations (1-2 year) for tuning and development

Modifications for high resolution runs

- Ice-cloud radii in CAM4 0.23x0.31 were modified in ad hoc manner to obtain better TOA radiation
- CAM5 0.23x0.31 used interim prescribed BAM aerosol configuration

Clouds and radiation

1980-2004 Mean, annually averaged LWCF in **CAM5**

Ice water path vs LWCF (CAM5 Tropics 30S-30N Annual average)

Sensitivity to convective autoconversion rate

Development runs for Justin Small's Accelerated Scientific Discovery (ASD) project: **Multi**decadal coupled run using CAM-SE ne120 (~25km) and ~10 km Ocean (currently out to 30+ years) **Seasonal Means**

Sea-level Pressure

991.

988.

DJF

E) ERA-Interim Global Mean=1011.

1033.

1030.

1027.

1024.

1021.

1018.

1015.

1012.

1009.

1006.

1003.

1000.

997.

994.

991.

988.

0.00

Regional change in precipitation Taylor metric (distance from [1,0]) with increasing resolution

CAM5 DJF

worse

-0.20 -0.33 -0.47

-0.60 -0.73 -0.87

Regional Impact of Increased Resolution in US

CAM4)

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.2 0.0

DJF Northward moisture transport into SE US vs. area integrated precipitation

DJF Northward moisture transport into SE US vs. area integrated precipitation

Increased moisture flux may be related to rougher topography, not resolution itself. High-resolution runs with smoothed topography exhibit weaker precipitation increase in SE US.

Mean diurnal cycle of precipitation in JJA 2000-2005 TRMM

1100 Local

17.0 14.0 12.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.5 0.2 0.0

*Local time near 100W

B) JJA diurnal cycle analysis Global Mean=2.94

Average diurnal cycles of precipitation JJA 2000-2005

Mean diurnal cycle of precipitation in JJA 2000-2005 CAM5

Precipitation Hovmuller diagrams June 1- Aug 31 2002 CAM5 Averaged 35N-45N

Total Precip. 80 60 Dayв after 6/1/2002 & 20 ٥

-110 -100 -90 -80 -70 Longitude

Large Scale Precip.

Tropical Cyclone Statistics

Hours per year per 1° gridbox with TS-Cat 5. 1980-2004 avg

Hours per year per 1° gridbox with Cat 1-Cat 5. 1980-2004 avg

Hours per year per 1° gridbox with Cat 3-Cat 5. 1980-2004 avg

8.00 4.00

2.00 1.00 0.50 0.25 0.12 0.06

N Atlantic Tropical Cyclone number (TS-Cat 5)

Years 1980-2004: r= 0.20

GPI vs N Atlantic Tropical Cyclone number (TS-Cat 5)

CAM5 r= 0.45

CAM4 r= 0.67

GPI is areally-averaged in N Atlantic "max. development zone" then scaled

Components of GPI in N Atlantic

$$\mathrm{GP} = |10^5 \eta|^{3/2} \left(\frac{\mathcal{H}}{50}\right)^3 \left(\frac{V_{\mathrm{pot}}}{70}\right)^3 (1+0.1 V_{\mathrm{shear}})^{-2},$$

Global Accumulated Cyclone Energy (ACE)

 $ACE = 10^{-4} \sum_{i} V_{i}^{2}$ (Bell et al 2000)

Basinwide, global ACE are not as sensitive to tracking algorithms as number

Summary of Tropical Cyclone Statistics

- Climatological geographic distribution is reasonable
- CAM4 and CAM5 differ strongly in N Atlantic
- Interannual variability has some positive aspects, but still needs improvement.
- Global ACE agrees with obs. and across models (??!!)
- Not shown: TC-cores dominated by large-scale precip

Caveats:

- ONE ensemble member for each model.
- Track algorithms influence statistics, especially number of weak storms (but not ACE)

Looking Ahead

CAM5-SE is ready for work

- Climate of SE ne30 (~100km) now close to FV 0.9x1.25 –coupled as well as uncoupled
- Tropical ice-cloud issues in 0.23x0.31 persist in ne120
- CAM5-SE ne120 (~25km) AMIP run underway soon

How to proceed?

- Tune existing CAM5 physics in ne120?
 - Autoconversion
 - Convective time scale
 - TMS
- UNICON
- CLUBB
- Vertical resolution
- New/WACCM GW drag scheme
 - Non-zero phase speeds
 - Anisotropic mountain wave drag

Coupled high-res ocean/atmosphere project in the NCAR

Accelerated Scientific Discovery program

- J. Small, F. Bryan, J. Tribbia, R. Tomas, D. Bailey, J. Dennis, A. Baker, J. Edwards, J. Caron, M. Vertenstein, T. Scheitlin, J. Bacmeister
- Aims: investigate the role of small scales in the ocean and ice on climate
- Machine: Yellowstone, using up to 22000 cores
- Coupled CAM5-SE ne120/pop 1/10^{th:} present day
 - 40+ years
- Atmosphere-only simulations
 - with high resolution SST, 14 years
- Atmosphere-only sensitivity tests
 - Surface roughness, convection, topography
- Ocean-ice-only sensitivity
 - High-frequency ice-ocean coupling
 - Ocean viscosity (Gulf Stream separation)

Thank You

AMWG Meeting, Boulder CO, 11 February 2013

CAM5 Regionally Refined

1° global resolution, refined to 1/8°

Global 1/8°

CAM5-SE has a very efficient, scalable and *expensive* global 1/8° configuration.

- 6M core hours per year (ANL Intrepid)
- Yellowstone: 1-2M core hours?
- 3.1M physics columns

SGP 8x Regionally Refined

1° global resolution, refined to 1/8° continental sized region centered over SGP ARM site.

- 0.12 M core hours per year (Sandia Linux cluster).
- 67K columns.

Courtesy: Mark Taylor, DOE Sandia Labs

INDIVIDUAL FORECAST IC = 6 JAN

from Dave Williamson

Model Skill for Hindcast Experiments

The values are comparable to those achieved by the major forecast centers.

MJO CLIVAR Spectra

Atlantic-Eurasian Blocking (Spring: 1990-1999)

Tibaldi-Molteni index, courtesy Rich Neale

- Present-day time-slice: Observed SSTs
- Future time-slice: SSTs from RCP8.5

 + use correction for CESM SST bias
 + use correction for sea-ice cover (Hurrell *et al*, 2008)
- Precipitation change = Prec[2081-2100] Prec[1981-2000]

Change in precipitation over the US

CAM4 (1°)

Summer drought

Changes are less dramatic in winter

Taylor Diagrams (DJF)

Taylor Diagrams (JJA)

Change in precipitation over the US

CAM4 (1°)

CAM4 (0.25°)

mm/day

The CAM family

Model	CAM3 CCSM3	CAM4 CCSM4	CAM5 (CAM5.1) CESM1.0 (CESM1.0.3)	CAM5.2 CESMI.I
Release	Jun 2004	Apr 2010	Jun 2010 (June 2011)	Nov 2012
PBL	Holtslag-Boville (1993)	Bretherton et al (2009)	Bretherton et al (2009)	Bretherton et al (2009)
Shallow Convection	Hack (1994)	Hack (1994)	Park et al. (2009)	Park et al. (2009)
Deep Convection	Zhang-McFarlane (1995)	Neale et al. (2008)	Neale et al. (2008)	Neale et al. (2008)
Microphysics	Rasch-Kristjansson (1998)	Rasch-Kristjansson (1998)	Morrison-Gettelman (2008)	Morrison-Gettelman (2008)
Macrophysics	Rasch-Kristjansson (1998)	Rasch-Kristjansson (1998)	Park et al. (2011)	Park et al. (2011)
Radiation	Collins et al. (2001)	Collins et al. (2001)	lacono et al. (2008)	lacono et al. (2008)
Aerosols	Bulk Aerosol Model	Bulk Aerosol Model BAM	Modal Aerosol Model Ghan et al. (2011)	Modal Aerosol Model Ghan et al. (2011)
Dynamics	Spectral	Finite Volume	Finite Volume	Spectral element

C) _DJF CAM4 0.25 Degree

Global Mean=2.88

D) _DJF CAM5 0.25 Degree

7.00

Global Mean=3.18

6.00 5.00 4.00 3.00 2.00 1.00 0.50

0.20

0.00

Mean diurnal cycle of precipitation in JJA 2000-2005 CAM5

O22 02Local

*Local time near 100W

Mean diurnal cycle of *large-scale* precipitation in JJA 2000-2005 CAM5

1100 Local

122 O5LOCAL

*Local time near 100W