

Update on CAM development. Recent activities and near-term priorities.

Cécile Hannay (AMP) Mark Taylor, Peter Lauritzen, Sungsu Park, Julio Bacmeister, Joe Tribbia, Rich Neale, and many others.

The CAM family

Model	CAM3 CCSM3	CAM4 CCSM4	CAM5 (CAM5.1) CESM1.0 (CESM1.0.3)	CAM5.2 CESMI.I
Release	Jun 2004	Apr 2010	Jun 2010 (June 2011)	Nov 2012
PBL	Holtslag-Boville (1993)	Bretherton et al (2009)	Bretherton et al (2009)	Bretherton et al (2009)
Shallow Convection	Hack (1994)	Hack (1994)	Park et al. (2009)	Park et al. (2009)
Deep Convection	Zhang-McFarlane (1995)	Neale et al. (2008)	Neale et al. (2008)	Neale et al. (2008)
Microphysics	Rasch-Kristjansson (1998)	Rasch-Kristjansson (1998)	Morrison-Gettelman (2008)	Morrison-Gettelman (2008)
Macrophysics	Rasch-Kristjansson (1998)	Rasch-Kristjansson (1998)	Park et al. (2011)	Park et al. (2011)
Radiation	Collins et al. (2001)	Collins et al. (2001)	lacono et al. (2008)	lacono et al. (2008)
Aerosols	Bulk Aerosol Model	Bulk Aerosol Model BAM	Modal Aerosol Model Ghan et al. (2011)	Modal Aerosol Model Ghan et al. (2011)
Dynamics	Spectral	Finite Volume	Finite Volume	Spectral element
		= New parameterization/dynamics		

What's in CAM5.2 ?

- New dynamical core: Spectral Element (CAM-SE)
 - Improves scalability of CAM (no polar filter)
- New topography for CAM-SE

• 6 bug fixes

- Fix for the land scaling of dust
- Fix to wet radius calculation in the modal_aero_wateruptake module.
- Fix for the value for the Obukhov length used in dry deposition calculations.
- Fix in zm_conv to fix some inconsistency in the initialization of moist static energy.
- Fix in uw_shallow for the unreasonable concentration of some species in WACCM.
- Mods in MAM to generalize the method for calculating pH value of cloud water.
- Tuning for CAM-SE (dust and stratocumulus)

Coupled simulations with CAM5.2 (CESM1.1)

Diagnostics:

http://www.cesm.ucar.edu/experiments/cesm1.1

Stratocumulus are degraded in CAM-SE

SWCF (W/m2)

FV I deg mean = -48.9 W/m²

CERES-EBAF mean = -47.1 W/m^2

ANN

-45 -60 -75 -90 -105

-120 -135 -150 -170

SE ne30 mean = -47.7 W/m²

Lagrangian code improves stratocumulus deck

FV I deg mean = -48.9 W/m²

SWCF (W/m2)

CERES-EBAF mean = -47.1 W/m^2

SE ne30 + Lagrangian code mean = -48.1 W/m²

-15 -30

-45

-60 -75 -90 -105 -120

-135 -150 -170

Coupled simulations with CAM5.2 (CESM1.1)


```
CAM5.2-SE ne30 (~1 deg): 50 years
+ Lagrangian code
```

Temperature biases (Model – HadISST)

FV Ideg mean = -0.13 K RMSE = 0.97 K

SE ne30 + Lagrangian code mean = -0.21K RMSE = 0.92 K

Precipitation

FV I deg mean = 3.06 mm/day

Min = 0.03 Max = 28.7

17 14 12

10 9 8

3 2 1 0.5 0.2

GPCP mean = 2.67 mm/day

SE ne30 + Lagrangian code mean = 3.07 mm/day

> 1 0.5 0.2

Min = 0.03 Max = 24

Taylor diagram

In summary (so far)

- CAM5.2 was released in November 2012
 Spectral Element (SE) dycore (improves scalability of CAM) Includes 6 bugfixes (minor impact)
 CAM-SE competitive with CAM-FV except for stratocumulus
- Implementation of Lagrangian vertical transport for all variables
 Fixes stratocumulus

Taylor score is better than CAM-FV

CAM5.2 + Lagrangian code => This will become CAM5.3 Code will be released in May 2013 Earlier for developers

CAM5.3 will also include

Prescribed aerosol

Reduced size history files (namelist flags for extra output)

Too many versions of CAM... What should I use ?

	Release date	FV dycore	SE dycore
CAM 5.1 (in CESM1.0)	June 2011	Don't use (6 known bugs)	N/A
CAM 5.2 (in CESM1.1.1)	Nov 2012	YES (bugfixes)	Don't use (bad stratocumulus)
CAM 5.3 (in next release)	May 2013	YES (FV 2 deg only)	YES (Lagrangian vertical transport for T)

Near-term model development

- Unified Convection (UNICON)
 - unifies treatment deep + shallow
- Cloud Layers Unified By Binormals (CLUBB)
 - third-order turbulence closure centered around an assumed double Gaussian PDF
 - treatment for shallow+PBL+macrophysics
- PDF-based macrophysics
- SP-CAM: super-parameterization on branch
- Next generation MG microphysics
 - prognostic precipitation, mixed phase ice nucleation and convective microphysics
- Aerosol scheme
 - Prescribed Aerosol (BAM /MAM)
 - MAM4 ("aging" black carbon)
- Sub-columns infrastructure
 - all schemes see the same sub-columns: consistency among processes

Physics framework in CAM5+

Slide courtesy: Rich Neale

Near-term model development

• Dynamics

- Conservative Semi-LAgrangian Multi-tracer (CSLAM) advection
- MPAS dycore and regional mesh refinement in CAM-SE
- Address systematic precipitation biases
 - double ITCZ, Asian monsoon, summertime US rainfall
 - CAPT framework, high-resolution, UNICON, ...

Resolution

- High resolution runs (0.25 and finer). Horizontal resolution dependence (climate change response).
- Vertical resolution dependence (L30 -> L31, L60)
- Diagnostics (<u>http://www.cgd.ucar.edu/amp/amwg/diagnostics</u>)
 - Refactored diagnostics package (compatible with CAM-SE history files)
 - New diagnostics sets for aerosol, chemistry, WACCM
 - COSP cloud phase diagnostics

Documentation

- Moving from latex file to web-based documentation
- Guidelines for developers (<u>http://www.cesm.ucar.edu/working_groups/Atmosphere/</u>)

Thanks