PERTURBED-PARAMETER SIMULATIONS OF THE MJO WITH CAM5

James Boyle, Stephen Klein, Don Lucas, John Tannahill,

Shaocheng Xie, Ken Sperber

Program for Climate Model Diagnosis and Intercomparison / LLNL

Richard Neale

National Center for Atmospheric Research

February 12, 2013

CESM Atmosphere Model Working Group Meeting

Boulder, Colorado

Prepared by LLNL under Contract DE-AC52-07NA27344

- Modelers would like to understand how their climate models could better simulate an MJO
 - CAM5 is noticeably worse than CAM4 which was quite good (Subramanian et al. 2012). Why?
- We systematically explore the dependencies of CAM5's MJO simulation on uncertain parameters, with a "perturbed-parameter ensemble" technique
 - To what extent, do the parameters control the interactions of the parameterized processes and influence the MJO?
 - Are better MJOs within tuning ranges? Or are new parameterizations needed?
- We wish to more fully explore the range of model MJO behaviors as a function of parameters

PERTURBED PARAMETER SIMULATIONS

<u>"Climate":</u>

- CAM5.1 @ 2° resolution
- 5-year "AMIP" simulations (i.e. prescribed SSTs for 2000-05)
- Two ensembles:
 - Perturbed each of 22 parameters in CAM's physical parameterizations ONE-AT-A-TIME ("OAT") (# of simulations = 2*22 + 1 = 45)
 - Simultaneously perturb 22 parameters using Latin Hypercube Sampling ("LHS") (# of simulations = 1100)
- These simulations were performed for another project \rightarrow Only hourly (total) precipitation is available for our analysis

PARAMETERS VARIED

m	odelSection_modelVariable	variable description	low value	default	high value
	cldfrc_rhminh	Threshold RH for fraction high stable clouds	0.65	0.8	0.85
	cldfrc_rhminl	Threshold RH for fraction low stable clouds	0.8	0.8875	0.99
Large-	cldwatmi_ai	Fall speed parameter for cloud ice	350	700	1400
Scale _	cldwatmi_as	Fall speed parameter for snow	5.86	11.72	23.44
Cloud	cldwatmi_cdnl	Cloud droplet number limiter	0	0	1e+06
Ciouu	cldwatmi_dcs	Autoconversion size threshold for ice to snow	0.0001	0.0004	0.0005
	cldwatmi_eii	Collection efficiency aggregation of ice	0.001	0.1	1
	cldwatmi_qcvar	Inverse relative variance of sub-grid cloud water	0.5	2	5
Aerosol ·	dust_emis_fact	Dust emission tuning factor	0.21	0.35	0.86
PBL Turb	eddydiff_a2l	Moist entrainment enhancement parameter	10	30	50
Large-Scale Cloud	micropa_wsubimax	Maximum sub-grid vertical velocity for ice nucleation	0.1	0.2	1
	📜 micropa_wsubmin	Minimum sub-grid vertical velocity for liquid nucleation	0	0.2	1
Shallow	uwshcu_criqc	Maximum updraft condensate	0.0005	0.0007	0.0015
	uwshcu_kevp	Evaporative efficiency	1e-06	2e-06	2e-05
Conv.	uwshcu_rkm	Fractional updraft mixing efficiency	8	14	16
	uwshcu_rpen	Penetrative updraft entrainment efficiency	1	5	10
	zmconv_alfa	Initial cloud downdraft mass flux	0.05	0.1	0.6
D	zmconv_c0_Ind	Deep convection precipitation efficiency over land	0.001	0.0059	0.01
Deep _	zmconv_c0_ocn	Deep convection precipitation efficiency over ocean	0.001	0.045	0.1
Conv.	zmconv_dmpdz	Parcel fractional mass entrainment rate	0.0002	0.001	0.002
-	zmconv_ke	Evaporation efficiency parameter	5e-07	1e-06	1e-05
	zmconv_tau	Convective time scale	1800	3600	28800

a) correlation coefficient with the pattern of lead-lag correlation coefficients of band-passed filtered 5°N-5°S averaged precipitation with that in the Indian Ocean (70°-90°E)

b) east-west power ratio of precipitation variance in wavenumbers 1-5 and periods 20 – 90 days

Power Spectra

VARIABILITY IN METRICS

-0.9

-0.6

-0.3

-0.0

-0.3

-0.6

-0.9

160

LEAD-LAG CORRELATIONS PATTERNS (COM)

Stephen A. Klein 12 February 2013, p. 7

Power-Spectra

Observations

Default CAM5

Stephen A. Klein 12 February 2013, p. 8

k

Best by Metric

WHAT PARAMETERS MATTER? WHAT VALUES IMPROVE THE SIMULATIONS?

General approach

- Fit a mathematical "surrogate" model that relates the predictands (metrics of MJO simulation) to the predictors (physics parameters perturbed)
- Use "surrogate" model to tell you which predictors have influence and which are immaterial
- Create a new "surrogate" model with only the important predictors
- Use the new "surrogate" model and the observed predictand values to create likelihood estimates of the predictors
- Specific methods used
 - Sparse Polynomial Chaos Expansion (3rd order) (PCE)
 - Random Forest Regression (ET) (Breiman 2001)

DEEP CONVECTION PARAMETERS MATTER

Parameter likelihoods [5×10^{6} LHS samples, 2 metrics (patCorACIO, wePwrRatio), $\delta = 2.5$]

Suggested parameter improvements

- Zmconv_tau (Shorter & Longer timescale)
- Zmconv_c0_ocn (less autoconversion of convective condensate to precipitation)
- Zmconv_dmpdz (larger entrainment rate)
- \succ Note that the largest weights happen at the ends of the parameter ranges
 - This suggests that improvement performance would result if one allowed the parameters to go outside of the pre-specified ranges

- Perturbed-parameter technique allows a more thorough exploration of model sensitivities than normally done
- Improved simulations result from making it harder for deep convection to occur but when it occurs reducing the drying tendency of convection while trying get the convection over faster
- ➢ Issues:
 - 5 years is a bit short and introduces noise
 - 1100 simulations is insufficient for a 22 dimensional space

Next steps

- More diagnostics from longer simulations for selected runs
- Would an improved simulation result if we just change the parameters that are important, rather than all 22 simultaneously
- Would we get a different impression from coupled-ocean atmosphere modeling?
- Comparison with hindcasts results (not shown today):
 - Difference: c0_ocn is unimportant for precip in hindcasts (it matters for OLR/WVP)
 - Similarity: shorter tau is a better solution

THANKS FOR YOUR ATTENTION!

EXTRA SLIDES

IS THIS AN MJO?

Observations

Composite precipitation (shading) and 850 hPa zonal wind (contours) anomalies reveal some slight improvement

PARAMETER VALUES FOR ALL SIMULATIONS

Parameter Name

PARAMETER VALUES FOR US SIMULATIONS WITH "GOOD" METRICS

SIMULATIONS OF CLIMATOLOGICAL-MEAN PRECIPITATION

WHEELER-KILADIS DIAGRAM (SYMM.)

Default CAM5

Best by MJO Metric

WHEELER-KILADIS DIAGRAM (ANTI-SYMM.)

Anti-Symmetric/Background Westward Eastward 0.5 n=0 EIG 1.6 0.4375 1.5 1.45 0.375 1.4 1.35 (pd) 0.3125 0.25 0.1875 Frequency 1.3 1.25 (day⁻¹) 1.2 1.15 1.1 MRG 0.125 0.9 0.8 0.7 0.0625 0.6 0 -15 -10 -5 0 5 10 15 Zonal Wave Number

Default CAM5

Observations

Best by Metric

- Real-time Multivariate MJO Indices (RMM1 and RMM2) (Wheeler and Hendon 2004, Gottschalck et al. 2010)
 - Based on anomalies of 200
 hPa and 850 hPa zonal wind and Outgoing Longwave Radiation (OLR)

SCATTERPLOTS: RMSE vs. zmconv_tau

Deep Convection Timescale

Default