Toward understanding a climate (time mean) signal in convective precipitation in CAM

Brian Mapes and Baohua Chen RSMAS, University of Miami

Our "UWens-org" CAM5 version

- Park-Bretherton plume convection only
 - ZM scheme is disabled
- A two-plume ensemble
 - 1st plume is P-B standard "shallow convection"
 - 2nd plume has a lower entrainment rate
- A new prognostic field: "organization" Ω
 - governs 2nd plume's entrainment (via org2rkm)
 - governs 2nd plume's base mass flux (via org2cbmf2)

UWens-org

• "organization" Ω defined thusly:

$$\frac{\partial \Omega}{\partial t} = -(V_{sfc} \bullet \nabla_h \Omega) - \frac{\Omega}{10ks} + \sum_{sources} S_i$$

$$1 \qquad 2 \qquad 3$$

- 1. Advected by *low-level* flow
- 2. Decays with *timescale* 10 ks ~ 3h
- 3. Has Sources:
 - a) evap2org *(column_integrated_precip_evap) --- basic
 - b) coast2org where(0.1 < landfrac < 0.9) --- experiment

Conceptual guide to these experiments

A time-mean PRECC signal

- What is the impact of coast2org source?
- Expectation: coast2org → more Ω in coastal regions → more cloud base mass flux is sent up, into less-entraining 2nd plume → more PRECC
- But feedbacks can change that initial effect
 - positive (org \rightarrow evap of precip \rightarrow org)
 - or maybe negative (e.g. heating \rightarrow dyn \rightarrow drying)
 - or maybe eddy (via time correlations in disturbances)
 - few *a priori* constraints: why modeling is interesting!

Effect of coastal Ω source (overlay of two 5-year means for sig.)

Counterintuitive sign is *local* to MC Effect of coastal Ω source only in MC:

Why less MC rain with coastal Ω source?

• yet with *more* deep mass flux in plume #2...

Explaining a time-mean surprise

- Some precip efficiency effect?
 - Saturated M in tropical qsat(T,p) profile produces a pretty constant condensation rate per unit mass flux.
 - So cond \rightarrow PRECC must vary by many 10s of %
 - condensate \rightarrow precip conversion?
 - re-evap of precip above surface?

Explaining a time-mean surprise

 Are time mean fields a sufficient basis for explanation, or must we consider temporal correlations of fluctuations (of M and RH for example)?

• And always, forever, we worry: ? bugs ?

Branch run strategy

• See how counterintuitive sign (opposite to immediate, local effect) emerges

<u>Idea</u>: Explaining the turnaround in a case, and/or in the composite, plus showing that it is characteristic of a statistically meaningful number of branch cases, would constitute an explanation for the surprise/mystery sign

