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PDF approach for sub-grid variability 

Sub-grid variability is important for nonlinear processes 
 
 
 
From grid-cell means to PDFs 
 
 
 
 
For multivariate processes, both variances and co-variances are needed  
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Co-variances among microphysical variables 

Many variables and processes means many co-variances (correlations) 

Predicting all these correlations explicitly is impractical (hard and/or expensive, 
for N variables ~ N 2) 

 

Practical approaches for parameterization of co-variances: 

-  Prescribe based on empirical fits to field data or hi-resolution model results 

Can be inconsistent for different combinations of variables 

 

-  Predict some, diagnose others 
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Spatial distributions of hydrometeor species and 
vertical velocity are correlated 

W QS NS QI NI QC NC 
W 1.00 0.65 0.73 0.44 0.55 −0.01 0.34 

QS 0.65 1.00 0.95 0.29 0.43 0.06 0.14 

NS 0.73 0.95 1.00 0.49 0.60 0.04 0.21 

QI 0.44 0.29 0.49 1.00 0.77 −0.08 0.39 

NI 0.55 0.43 0.60 0.77 1.00 0.28 0.29 

QC −0.01 0.06 0.04 −0.08 0.28 1.00 0.09 

NC 0.34 0.14 0.21 0.39 0.29 0.09 1.00 

Vertical velocity 

Snow mass 

Snow number 

Ice mass 

Ice number 

Cloud mass 

Cloud number 

Example from LES of Arctic mixed-phase cloud ISDAC, April 26 case 
 

Σ  = Correlation matrix  
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Can the correlation matrix be recreated given the first row (~subgrid vertical flux) ? 

Dynamics 
+ 

Mphysics 
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Parameterization of correlations 
Assume that means, variances, and vertical fluxes (cW,X) are known 
 
Define upper and low bounds for other correlations 

 

	
 	
(exact bounds but too loose to be practical)	

Diagnose values of  each correlation using 

 

 (i=1 for vertical velocity, w) 

Approaches:       Testing 

•  Prescribe ci,j directly     Online  

•  Compute c1j , diagnose ci,j using      

  parameterized fi,j (fixed or variable)  Online, Offline 

cX1,X2 max
min

= cW ,X1cW ,X2 ± 1! cW ,X1
2( ) 1! cW ,X22( ) = cW ,X1cW ,X2 ± sW ,X1sW ,X2

cij = c1ic1 j + fij s1i s1 j
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Off-line testing of diagnosed correlations  
•  Apply method to  three simulated cases of Arctic mixed-phase 

clouds covering a range of conditions 
•  Compare diagnosed and model-predicted (“true”) correlations 

ISDAC 

M-PACE B 

M-PACE A 

Optimal α’s are similar for the three cases:  
 α = 0.19, 0.11, 0.21.  
A “general” parameterization could be possible. 

(Larson, et al., 2011, JGR) 
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cij satisfies exchange symmetry (7) because if i and j are
switched with each other on the right‐hand side of (15), the
right hand remains unchanged. The expression also satisfies
odd parity symmetry (6) because if either the ith or jth
variate changes sign, so does the right‐hand side.
[52] We call equations (15) and (16) the “cSigma”

parameterization because it is inspired by the assumption
that cij ≈ Sij. The cSigma parameterization is useful in cases
in which the ordering of the magnitudes of the correlations
is not known. In other cases, it is reasonable to suppose that
the correlations are ordered. For instance, the correlation
between a quantity at two times should decrease as the time
interval increases. In such cases, one may use the parame-
terization of Rapisarda et al. [2006] and Schoenmakers and
Coffey [2003].
[53] Equation (16) would be of limited practical use if it

were necessary to choose a different value of the adjustable
parameter a for each different cloud. To assess whether a
single, robust value of a can be chosen, we partition the data
points into three groups, corresponding, naturally, to the
three cloud cases: ISDAC, M‐PACE B, and M‐PACE A.
Using these three groups, we perform a k‐fold cross vali-
dation [e.g., Kohavi, 1995] in which all data points from one
cloud case are omitted, the value of a is optimized using
data from the remaining two cases, and then the resulting
optimal value of a is used in (LLT)ij to test how accurately it
represents Sij in the omitted cloud case.
[54] We optimize the value of the parameter a using the

Levenberg‐Marquardt method [Press et al., 1992]. When

we arrange the columns in S in the order [W, QS, NS, QI,
NI, QC, NC], then we find that the best fit value of a is 0.19
when ISDAC data are excluded, 0.11 when M‐PACE B is
excluded, and 0.21 when M‐PACE A is excluded. The
values of a are fairly close for these three cases, raising
hopes that a single value of a can be used widely without
great loss of accuracy. Using these parameter values in the
plots results in Figures 8, 9, and 10. The correlation esti-
mates tend to have a low bias and are somewhat scattered
about the 1:1 line. Nonetheless, considering the simplicity,
generality, and inexpensiveness of formulas (15) and (16),
the fit is quite acceptable.

8. For Comparison: Covariances Based
on the Scalar Variance Equation

[55] We now compare the estimate (5), which is related to
the spherical parameterization, with an alternative method-
ology that estimates the correlations based on the scalar
variance equation. The covariance of X1 and X2, X ′

1X
′
2, is

governed by the equation
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Here t is a turbulent dissipation scale, Cd is an empirical
constant, t is time, and z is altitude. An overbar denotes a

Figure 8. A scatterplot of ISDAC correlations from LES and from the spherical parameterization with cij
set according to the cSigma parameterization (equations (15) and (16), with a = 0.19). The value of a has
been optimized using M‐PACE B and M‐PACE A data points. Altitude levels are chosen and time
averaging is performed as in Figure 4. Considering the simplicity of the cSigma parameterization, the fit is
satisfactory.
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Parameterization of correlations 
Diagnose correlations using 

 

Approaches:       Testing 

•  Prescribe ci,j directly     Online  

•  Compute c1j , diagnose ci,j using      

  parameterized fi,j (fixed or variable)  Online, Offline 

cij = c1ic1 j + fij s1i s1 j
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Interactive testing 
Liquid only clouds 

w s, qc nc qr nr 
w 1.00 

s, qc 1.00 

nc 1.00 

qr 1.00 

nr 1.00 

Vertical velocity 

Cloud water 

Cloud number 

Rain mass 

Rain number 

Σ  = Correlation matrix  
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s – extended liquid water mixing ratio (in cloud ~ qc )  



V. E. Larson and B. M. Griffin
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Figure 1. The time-averaged values of ρ(s,rr ), which is the correlation of s and rr (a), ρ(s,Nr ), which is the correlation of s and Nr (b), ρ(s,Nc), which is the
correlation of s and Nc (c), and ρ(rr ,Nr ), which is the correlation of rr and Nr (d). The values of the correlations are taken from a SAM LES simulation of the
DYCOMS-II RF02 case time-averaged over hours 4–6. For each plot, the thick, solid line is the time-average value of the correlation at each vertical level.
The dashed line is the average value of the correlation at all levels with at least some cloud. The dash-dotted line is the average value of the correlation at
levels entirely without cloud. The dotted line is the time-averaged altitude of cloud base, which does not change much over the time-averaging period.

and

Ncn = ln
(

Nc

Nc0

)
, (11)

where we introduce the constants rr0 = 1 kg kg−1, Nr0 =
1 kg−1, and Nc0 = 1 kg−1 in order to non-dimensionalize the
log-normally distributed variables and thereby avoid taking
the logarithm of dimensional quantities. The normally
distributed variables rrn, Nrn, and Ncn are dimensionless.
Their (dimensionless) means are denoted by µrrn , µNrn , and
µNcn , and their (dimensionless) variances are denoted by
σrrn , σNrn , and σNcn .

We can express the means and the variances of the
normally distributed variables in terms of their log-normally
distributed counterparts (Garvey, 2000, Appendix B):

µrrn = ln





〈rr〉
rr0

(

1 +
〈
r′2

r

〉

〈rr〉2

)−1/2



 , (12)

σrrn =
{

ln

(

1 +
〈
r′2

r

〉

〈rr〉2

)}1/2

, (13)

with analogous equations for Nr and Nc.

When a variable is transformed from log-normal to
normal, its correlations with other variables change. In this
paper, a linear correlation coefficient between two arbitrary
variables, e.g. x and y, will be denoted

ρ(x,y) =
〈
x′y′〉

√〈
x′2

〉√〈
y′2

〉 . (14)

Such correlations may be interpreted as non-
dimensionalized covariances.

First, we list a formula for the correlation between a
normal variable, such as s(i), and a variable that has been
transformed from log-normal to normal. Specifically, the
correlations between s(i) and any of the normally distributed
variables rrn, Nrn, and Ncn are given in terms of the
correlations between s(i) and the corresponding log-normal
variables rr, Nr, and Nc by (Garvey, 2000, Eq. B-1)

ρ(s(i),rrn) = ρ(s(i),rr)

{
exp

(
σ 2

rrn

)
− 1

}1/2

σrrn

, (15)

with similar equations for Nr and Nc.
Second, we list a correlation formula for two log-normal

variables (rr and Nr) that have been transformed to normal

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)

Interactive test 1:  
prescribed correlations  

B. M. Griffin and V. E. Larson
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Figure 5. Time series of liquid water path (LWP) (a) and surface precipitation flux (b) over the entire course of the simulation. The figure shows results
from SAM LES (thick solid lines), the SCM with upscaled microphysics (thin dashed lines), and the SCM with local microphysics (thin dotted lines). All
three models produce similar LWP, once again suggesting that the forcing of rain production is similar in all three models. Nevertheless, although both
SCM simulations underestimate surface precipitation, the upscaled version produces considerably more than does its local counterpart.

magnitudes of the inputs to these formulas. To do so,
we compare local and upscaled formulas using the same
inputs. Specifically, we analyse the simulation with upscaled
microphysics, and we compute the ratio of [the local process
rates that would have occurred if we had fed in the relevant
fields from the upscaled simulation] to [the upscaled process
rates themselves]. For instance, for autoconversion, we
compute (see Eq. (28) of Part I):

〈(
∂rr

∂t

)

auto

〉

normalized

=
〈rc〉2.47 〈Nc〉−1.79

〈
r2.47

c N−1.79
c

〉 (1)

= local auto

upscaled auto
.

In both numerator and denominator, we feed in values
of rc and Nc from the upscaled simulation. Likewise, for
accretion, we compute (see Eq. (38) of Part I):

〈(
∂rr

∂t

)

accr

〉

normalized

=
〈rc〉1.15 〈rr〉1.15

〈
r1.15

c r1.15
r

〉 (2)

= local accr

upscaled accr
.

Finally, for evaporation, we compute (see Eq. (52) of Part I):
〈(

∂rr

∂t

)

evap

〉

normalized

=
〈rr〉1/3 〈Nr〉2/3 〈S〉〈

r1/3
r N2/3

r S
〉 (3)

= local evap

upscaled evap
.

Here Nr is the number concentration of raindrops per
mass of air in kg−1, and S is supersaturation, which is
dimensionless.

Each of these three normalized process rates is a non-
dimensional ratio. If the ratio is less than one, then it
means that upscaling the microphysics increases the process
rate relative to the local formula, which neglects subgrid
variability. If the ratio is greater than one, then the upscaled
rate is less than the local rate.

The ratios of autoconversion, accretion, and evaporation
are displayed in Figure 7. Figure 7(a) shows that the upscaled
autoconversion rate is greater than the local rate at all
altitudes. At the altitude where both versions autoconvert
the most, which is just above 800 m (see Figure 8(a)), the
upscaled autoconversion rate is approximately 20% larger
than the local autoconversion rate. The difference at that
altitude occurs because autoconversion depends sensitively
on cloud water variance,

〈
r′2

c

〉
, and the variance is greatest

at that altitude, as shown in Figure 2(c). Additionally,
the vertical average of the upscaled autoconversion rate is
calculated to be about 20% larger than the vertical average
of the local autoconversion rate.

Figure 7(b) shows that the upscaled version accretes cloud
water faster than does the local version at all altitudes. At the
altitudes of greatest accretion rate, the upscaled accretion
rate is 10–15% larger. The vertical average of the upscaled
accretion rate is 13% larger than the vertical average of
the local accretion rate. Thus the percentage increase of the
upscaled version over the local version is less for accretion
than for autoconversion. Nevertheless, the absolute increase
for accretion and autoconversion is comparable. The reason
is that accretion is larger than autoconversion. Specifically,
Figure 8 shows that the upscaled microphysics produces a
peak autoconversion of about 8 × 10−9 kg kg−1 s−1 but a
peak accretion rate of 15 × 10−9 kg kg−1 s−1.

Figure 7(c) shows that the normalized evaporation ratio is
greater than one below an altitude of approximately 500 m.
That is, below 500 m the upscaled evaporation rate has a

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)

(Larson & Griffin, 2012, QJRMS) 

Drizzling Sc (DYCOMS-II RF02 case)  
Limited two-moment bulk microphysics for cloud and rain (fixed cloud 
number concentration), analytically upscaled 
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Accounting for sub-grid variability improves predicted precipitation. 

LES 

Fixed 
values 

w qc nc qr nr 
w 1.00 

qc 1.00 

nc 1.00 

qr 1.00 

nr 1.00 



Interactive test 2:  
diagnosed correlations with w  
DYCOMS-II RF02 

W qc nc qr nr 
W 1.00 

qc 1.00 

nc 1.00 

qr 1.00 

nr 1.00 
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SCM 
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Interactive test 2:  
diagnosed correlations  

DYCOMS-II RF02 

W qc nc qr nr 
W 1.00 

qc 1.00 

nc 1.00 

qr 1.00 
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Summary and next steps 
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A method for computing a consistent correlation matrix for microphysical 
variables is proposed 

Vertical turbulent fluxes are used as input  
(can be parameterized as a down-gradient diffusion for some variables) 

Encouraging results (compared to reference LES) from 

•  off-line test for stratiform mixed-phase clouds 

•  on-line (SCM-CLUBB) tests of warm shallow clouds with two-moment 
microphysics using either prescribed or computed correlations 

Next: 

•  test other approaches for parameterization of correlations 

•  apply approach to different cloud types 



Questions 
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