Accounting for co-variances among microphysical variables

Mikhail Ovchinnikov¹, Vince Larson², Jan Hoft², Minghuai Wang¹, Steve Ghan¹, Phil Rasch¹

¹PNNL, ²UWM

Acknowledged support from DOE "Polar project", SciDAC

PDF approach for sub-grid variability

Sub-grid variability is important for nonlinear processes

$$\langle F(x) \rangle \neq F(\langle x \rangle)$$

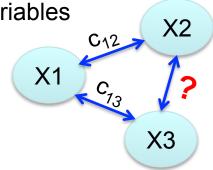
From grid-cell means to PDFs

$$f(x)$$
 $f(x)$ $f(x)$ $f(x)$

For multivariate processes, both variances and co-variances are needed

Co-variances among microphysical variables

Many variables and processes means many co-variances (correlations)


Predicting all these correlations explicitly is impractical (hard and/or expensive, for *N* variables ~ N^2)

Practical approaches for parameterization of co-variances:

- Prescribe based on empirical fits to field data or hi-resolution model results

Can be inconsistent for different combinations of variables

- **Predict** some, **diagnose** others

Spatial distributions of hydrometeor species and vertical velocity are correlated

Example from LES of Arctic mixed-phase cloud ISDAC, April 26 case

		W	QS	NS	QI	NI	QC	NC	- Dynamics
Vertical velocity	W	1.00	0.65	0.73	0.44	0.55	-0.01	0.34	_ ≻ ⁺ +
Snow mass	QS	0.65	1.00	0.95	0.29	0.43	0.06	0.14	Mphysics
Snow number	NS	0.73	0.95	1.00	0.49	0.60	0.04	0.21	
Ice mass	QI	0.44	0.29	0.49	1.00	0.77	-0.08	0.39	Micro
Ice number	NI	0.55	0.43	0.60	0.77	1.00	0.28	0.29	physics
Cloud mass	QC	-0.01	0.06	0.04	-0.08	0.28	1.00	0.09	
Cloud number	NC	0.34	0.14	0.21	0.39	0.29	0.09	1.00	

Σ = Correlation matrix

Can the correlation matrix be recreated given the first row (~subgrid vertical flux)?

Parameterization of correlations

Assume that means, variances, and vertical fluxes ($c_{W,X}$) are known

Define upper and low bounds for other correlations

$$c_{X_1,X_2}\Big|_{\max} = c_{W,X_1}c_{W,X_2} \pm \sqrt{\left(1 - c_{W,X_1}^2\right)\left(1 - c_{W,X_2}^2\right)} = c_{W,X_1}c_{W,X_2} \pm s_{W,X_1}s_{W,X_2}$$

(exact bounds but too loose to be practical)

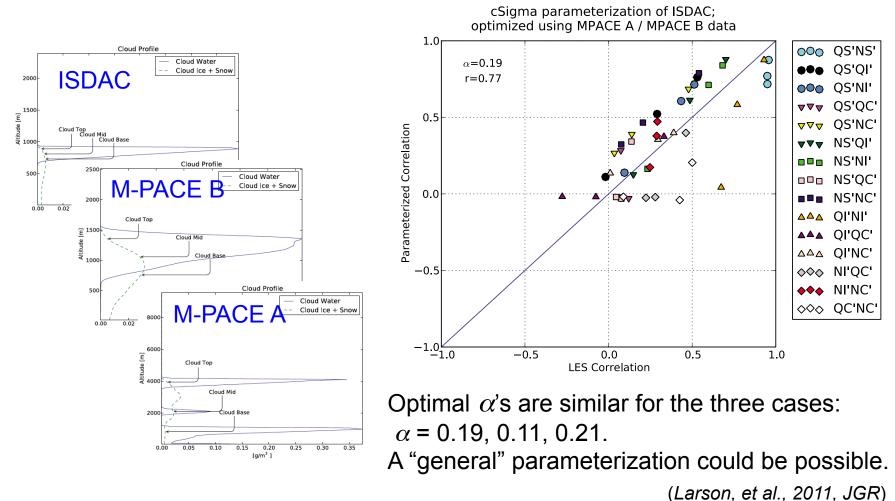
Diagnose values of each correlation using

 $c_{ij} = c_{1i}c_{1j} + f_{ij}s_{1i}s_{1j} \qquad -1 \le f_{ij} \le 1$ (*i*=1 for vertical velocity, *w*)

Approaches:

- Prescribe $c_{i,i}$ directly
- Compute c_{1i} , diagnose $c_{i,i}$ using

parameterized $f_{i,i}$ (fixed or variable)


Online, Offline

Testing

Online

Off-line testing of diagnosed correlations

- Apply method to three simulated cases of Arctic mixed-phase clouds covering a range of conditions
- Compare diagnosed and model-predicted ("true") correlations

Parameterization of correlations

Diagnose correlations using

 $c_{ij} = c_{1i}c_{1j} + f_{ij} s_{1i} s_{1j} \qquad -1 \le f_{ij} \le 1$

Approaches:

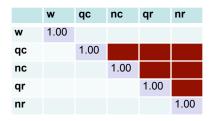
- Prescribe $c_{i,j}$ directly
- Compute c_{1j} , diagnose $c_{i,j}$ using

parameterized $f_{i,i}$ (fixed or variable)

Online, Offline

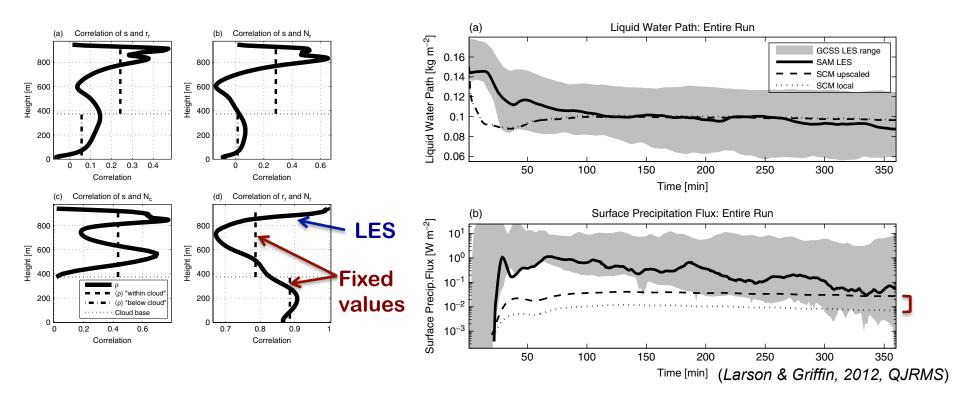
Testing

Online

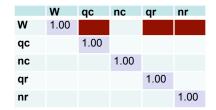

Interactive testing Liquid only clouds

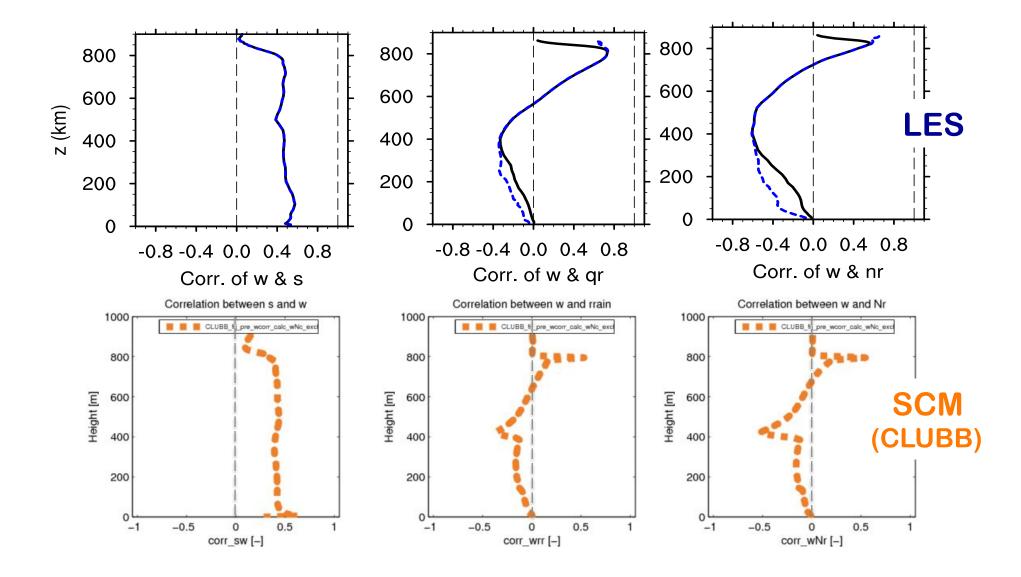
Σ = Correlation matrix

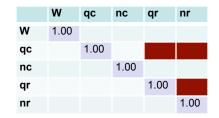
		W	s, qc	nc	qr	nr
Vertical velocity	W	1.00				
Cloud water	s, qc		1.00			
Cloud number	nc			1.00		
Rain mass	qr				1.00	
Rain number	nr					1.00


s – extended liquid water mixing ratio (in cloud ~ qc)

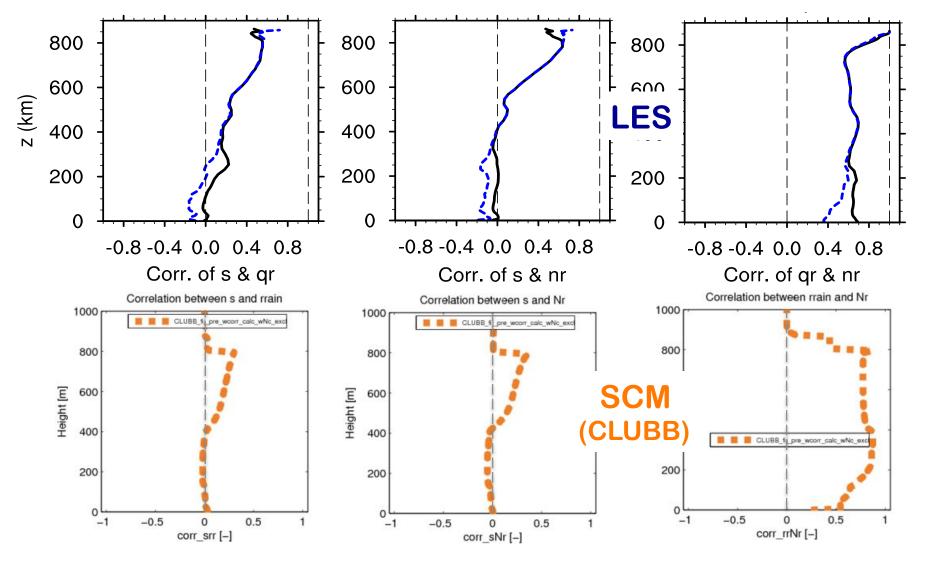
Interactive test 1: prescribed correlations


Drizzling Sc (DYCOMS-II RF02 case)


Limited two-moment bulk microphysics for cloud and rain (fixed cloud number concentration), analytically upscaled


Accounting for sub-grid variability improves predicted precipitation.

Interactive test 2: diagnosed correlations with *w* DYCOMS-II RF02



Interactive test 2: diagnosed correlations

DYCOMS-II RF02

Summary and next steps

A method for computing a **consistent correlation matrix** for microphysical variables is proposed

Vertical turbulent fluxes are used as input (can be parameterized as a down-gradient diffusion for some variables)

Encouraging results (compared to reference LES) from

- off-line test for stratiform mixed-phase clouds
- on-line (SCM-CLUBB) tests of warm shallow clouds with two-moment microphysics using either prescribed or computed correlations

Next:

- test other approaches for parameterization of correlations
- apply approach to different cloud types

Questions