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ABSTRACT

The author’s explore the implications of the temporal and spatial sampling of the radiation Àelds and tendencies
upon the Àelds produced by the ECMWF system in operational-type forecasts, four-month seasonal integrations,
and analyses. The model is shown to be much more sensitive to economies in the temporal than in the spatial
description of the cloud–radiation interactions.
In 10-day forecasts, the anomaly correlation of geopotential shows little sensitivity to a more complete

representation of the cloud–radiation interactions, but temperature errors display a stronger dependence on the
temporal representation. The difference increases with height, particularly in the tropical areas where interactions
among convection, clouds, and radiation dominate. In pointwise comparisons over Àve days, the approximate
temporal representation introduces only small differences in total cloudiness, surface temperature, surface ra-
diation, and precipitation.
In four-month seasonal simulations, the small errors seen in 10-day forecasts build up and a better temporal

resolution of the radiation produces a colder stratosphere through cloud–radiation–convection interactions. The
spatial sampling in the radiation computations appears beneÀcial to the operational model, inasmuch as, close
to the surface, it smooths an otherwise wavy radiative forcing linked to the spectral representation of the surface
pressure.
The impact of the temporal/spatial sampling in the radiation calculations is usually much weaker in the analyses

when and where observational data are available, but can be felt if the density of observations becomes smaller.
On the contrary, the effect of the temporal/spatial interpolation is important on the sensitivity parameters derived
from perpetual July simulations with perturbed SSTs.



Radiation accuracy isn’t cheap, so we compromise:    

“radiation time steps” >> “physics time steps”

“radiation grid” >> “physics grid”



Radiation accuracy isn’t cheap, so we compromise:    

“radiation time steps” >> “physics time steps”

“radiation grid” >> “physics grid”

We assume hope this works under all circumstances

Awkward convergence (see also: resolution dependence)

Optimality is impossible



An alternative for high-resolution models

Heating rates imply broadband radiation: weighted sums of O(100)

Decreasing the resolution for radiation is to make 
spectrally dense calculations sparsely in time and/or space

For large-eddy simulations these densities can be swapped

Monte Carlo Spectral Integration (Pincus and Stevens, 2009): 
choose a single spectral interval randomly in space and time
scale to broadband calculation
repeat
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A solution for high-resolution models

Heating rates imply broadband radiation: weighted sums of O(100)

Decreasing the resolution for radiation is to make 
spectrally dense calculations sparsely in time and/or space

For large-eddy simulations these densities can be swapped

Monte Carlo Spectral Integration (Pincus and Stevens, 2009): 
choose a single spectral interval randomly in space and time
scale these to broadband calculation
repeat

This has nice numerical properties (random error, convergence)

It works well*
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Assessing radiative approximations using ECHAM6

Radiation is PSrad, a drop-in replacement for RRTMG

Resolution is T63L47 with 7.5 minute time step

30 day forecasts with 29 member ensemble starting 
1 Apr {1976-2004}

Comparison is with “reference forecast” 
(radiation called every time step) 
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MCSI works in LES because the scaling of approximation errors is 
opposed to the scaling of the energy in the flow: 
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Interactive surfaces change this scaling

perturbations are diffused only in time, not in space

More non-linear parameterizations may magnify perturbations
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We seek to bound errors in surface fluxes

Increasing the number of Monte Carlo samples is slow 

We create a league of g-point teams

all teams are the same size

all g-points are on used exactly once 

teams are chosen to minimize errors

Leagues are optimized offline using clear-sky fluxes

Spectral sampling: the US middle-school football model
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Practical details and conceptual considerations

We re-implemented RRTMG to permit flexible spectral sampling 
(and we are happy to share)

Sampling cloud states (McICA) is orthogonal to spectral sampling

Errors in perfect-model forecasts are comparable to reducing 
resolution

But there’s conceptual appeal (and maybe practical benefit) in 

consistency/convergence, and so scale independence

simplicity


