

SP-CAM5 with CLUBB: progress and remaining issues

Minghuai Wang

Steven Ghan, Mikhail Ovchinnikov, Heng Xiao, Phil Rasch, Xiaohong Liu – PNNL

Vincent Larson, David P. Schanen – U. Wisconsin – Milwaukee Andrew Gettelman, Cheryl Craig, Jim Edwards, Brian Eaton – NCAR Mark Branson, Dave Randall - CSU

The Multi-scale Modeling Framework (MMF)

The MMF with aerosol-cloud interactions (PNNL-MMF)

CAM5 with modal aerosols

Two-moment microphysics

CRM cloud/precipitation statistics used for cloud processing of aerosols

CLUBB in MMF

- Low clouds have been underestimated in MMF simulations (4km grid-spacing)
- Improved turbulence/sub-grid cloud treatment is expected to improve the simulation of deep clouds and the transition from shallow to deep clouds as well
- CLUBB in MMF serves as an early test of CLUBB's scale-aware capability
- CLUBB: assumed, dynamical PDF approach

$$P = P(w, q_t, \theta_l)$$

w , vertical velocity; $\,q_t$, total water mixing ratio; θ_l , liquid water potential temperature

Proudly Operated by Battelle Since 1965

Porting the MMF (both aerosol and nonaerosol versions) into CAM5 trunk (SP-CAM5)

- This is supported by the NSF/DOE through two EaSM projects, and led by Cheryl Craig and Andrew Gettelman at NCAR
- The PNNL-MMF (based on the tag cam3_6_26) has been merged into a most recent CAM5 tag (cam5_2_09)
- SPCAM has been merged with CESM1.1.1, and the SPCAM branch of CESM1.1.1 will be released in weeks
- It includes two compsets:
 - F_2000_SPCAM_sam1om1 (single-moment, nonaerosol)
 - F_2000_SPCAM_m2005 (double-moment, aerosol)

Single-moment (sam1mom) vs. double-moment microphysics (m2005) (No CLUBB, at 1.9x2.5 degree)

	Sam1mom (MMF)	M2005 (MMF)	CAM5	Obs
LWP (g/m2)	87	55	48	50-87
IWP (g/m2)	47	11	16	10-65
SWCF (W/m2)	-52	-50	-50	-46 to -53
LWCF (W/m2)	28	27	22	27-31
PRECT (mm/day)	2.85	2.82	2.95	2.61
CLDTOT (%)	52.1	51.2	62.7	65-75

Improved low cloud simulations with CLUBB (at 4x5 degree)

High clouds and deep convection in m2005

	sam1mom CLUBB (no clubb)	M2005 CLUBB(no clubb)
IWP (g/m2)	52 (47)	7 (11)
CLDHGH (%)	<mark>24 (</mark> 24)	<mark>21</mark> (28)
LWCF (W/m2)	<mark>30</mark> (28)	<mark>22</mark> (27)
Aerosol optical depth	0.06 (0.13)	
Black carbon burden (0.09 (0.16)	
Wet removal from cor (%)	12 (34)	

Sensitive to the microphysical coupling for deep clouds in SAM_CLUBB (ARM9707 case over SGP site, 16 4-km CRM columns)

9

Variance of total water: resolved variance is too Pacific Northwest NATIONAL LABORATORY Weak, while variance from CLUBB is strong

Summary and Future work

- A next generation MMF model has been built to simulate multiscale interactions between aerosols, clouds, and precipitation
- This MMF model has been ported into a most recent tag of CAM5 (cam5_2_09)
- SPCAM branch of CESM1.1.1 will be released to the public in weeks
- Further work is needed to improve the SPCAM simulations with CLUBB: time evolution of budget terms; resolution dependence; applying UQ to quantify the parameter dependence of CLUBB