The implications of differences in stomatal conductance model parameters on estimates of ecosystem-atmosphere energy exchange

Bill Bauerle, Dave Barnard, Grace Lloyd, Alex Daniels, Dan Banks, Gretchen Reuning, & Brianna Miles

Colorado State University

MAESTRA

Sensitivity analyses

Understanding g_0

Understanding g₁

Conclusions

Image - Bauerle & Bowden 2011. JXB:4295-4307.

Sub-model (g_s)

- Background on models
- Sensitivity analyses
- Understanding g₀
- Understanding g₁
- Conclusions

e.g. Ball-Berry g_s model as modified by Leuning (1995)

Transpiration estimate parameter sensitivity

Background on models

Sensitivity analyses

Understanding g_0

Understanding g₁

Conclusions

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Parameter interactions with environment

Background on models

Sensitivity analyses

Understanding g₀

Understanding g₁

Conclusions

Bauerle et al., in review

Parameter importance changes with environment

Background on models

Sensitivity analyses

Understanding g₀

Understanding g₁

Parameter effect increases with canopy depth

Sensitivity analyses

Understanding g₀

Understanding g₁

Conclusions

Sub-models (g_s)

Background

*g*₀ response to drought/season

Model performance

Sensitivity analysis

Understanding g_0

Larger scale implications

Conclusions

Ball-Berry g_s model as modified by Leuning (1995)

Light dependence of g_0

- Background on models
- Sensitivity analyses
- Understanding g_0
- Understanding g_1
- Conclusions

Absorbed PAR (μ mol m⁻² s⁻¹)

Error propagation of g_0 parameter fit

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

g_0 estimate error

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

g_1 – differences among index

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Lloyd et al., in review

Water stress response

Background on models

Sensitivity analyses

Understanding g₀

Understanding g_1

Conclusions

Lloyd et al., in review

g₁ – Time and water stess response

Background on models

Sensitivity analyses

Understanding g₀

Understanding g_1

Conclusions

Lloyd et al., in review

Water stress response

Background on models

Sensitivity analyses

Understanding g_0

Understanding g_1

Conclusions

Background on models

Sensitivity analyses

Understanding g₀

Understanding g₁

- g_0 is the parameter with highest influence on transpiration estimates (in 3-dimensions)
- The g_0 parameters importance changes with environmental conditions
- The magnitude of the g_0 parameter is indirectly proportional to absorbed light
- Using measured g_0 gave better model estimates than linear estimates

Conclusions

Background on models

Sensitivity analyses

Understanding g₀

Understanding g₁

- g₁ is the parameter with second highest influence on transpiration estimates (in 3dimensions)
- g₁ values can be different among calculation indices
- The g₁ parameter changes over time and in response to water stress
- We are revisiting the methods of "measuring" the *g*₁ parameter