

Proudly Operated by Battelle Since 1965

Bayesian calibration and evaluation of transferability of hydrologic parameters in CLM

Maoyi Huang, Zhangshuan Hou, Yu Sun, Huiying Ren, Ying Liu, Yinghai Ke, Teklu Tesfa, Guoyong Leng, Jiali Guo, Hongyi Li, L. Ruby Leung

Pacific Northwest National Laboratory

CESM joint LMWG-BGCWG-UQ meeting, Mesa Lab, Boulder, CO 21 February 2013

Outline

An uncertainty quantification framework designed for CLM
Results at selected flux towers and MOPEX basins

- Bayesian inversion/calibration of the hydrologic parameters
 - MCMC inversion of CLM4
 - MCMC inversion using surrogates (Ray et al., this meeting)
- Toward understanding the parameter transferability
 - Classification of MOPEX basins
 - Future work plan

Pacific Northwest NATIONAL LABORATORY

An uncertainty quantification framework designed for CLM

Pacific Northwest

Selected flux towers and MOPEX basins

Efficient sampling of the parameter space

0

0.010 0.025

Sy

QMC samples in parameter space QMC samples in probability space f_ma: 0.0 **S**2 0.0 0.8 Cs 0.0 0.8 f_over ^{0.8} 52 0.0 f_drai 0.0 0.8 8 0.0 0.0 M Sy 1.191 0.0 0.8 S. 0.0 0.0 0.8 00 g(Ks) theta_s Prior PDF of model parameters 0 2 4 0.00 0.08 0 10 0.00 0.06 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8 1.5 œ Ö 0.20 4 Ö 1.0 pdf 0.4 Ö pdf pdt pdf pdf 0.10 0.4 2 5 o. Ö 0.00 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.6 2 Ó 2 -4 -2 0 4 4 -6 f_drai f_max f_over q_draimax Cs 0.20 0.6 5 4.0 4.0 pdf 0.10 pdf 0.2 10 pdf 0.10 pdt pdf 0.2 S 8 0.00 0 0

Ö

2

ψs

0

20

ö

0 10

b

Ö

-2.0 0.0

Ks

50 35

θs

Surface fluxes and runoff are very sensitive to model parameters

Ranks of significance of input parameters

Inversion workflow for CLM4

Selected sites for inversion

Inversion results

Inversion based on 3 parameters

3/5/2013

Model reduction and parameter transferability Pac

- Although parameter calibration could be used to improve model simulations and quantify uncertainties, it suffers from issues associated with high-dimensionality in number of parameters or large spatial dimensions (e.g., a global domain);
- To reduce the dimensionality, we need to cluster sites/grid cells into classes that share similar characteristics;
- A PCA+MCLUST-based approach is used for classifications;
- Different classification systems were explored:
 - C-Class: Climate-based
 - S-Class: sensitivity-based;
 - H-Class: hydrologic indices-based

Pacific Northwest

431 MOPEX basins over the US

Parameter sensitivity over 431 MOPEX basin

Proudly Operated by Battelle Since 1965

Sensitivity of LH

Sensitivity of runoff

Overall significance of the hydrologic parameters across the MOPEX basins

Determine number of classes

- Bayesian Information Criterion (BIC) for determining number of classes
- It is reasonable to choose 8 classes for the best compromise between class model complexity and likelihood of the model

S-Classes of the MOPEX basins

H-Classes of the MOPEX basins

Proudly Operated by Battelle Since 1965

5. Drainage density

Summary and future work

- An uncertainty quantification framework has been implemented with CLM4; Application of the framework to selected sites suggests that CLM4 show the largest sensitivity to subsurface runoff generation parameters;
- The global sensitivity analyses provides guidance on reduction of parameter set dimensionality and parameter inversion framework design for CLM4;
- To reduce the dimensionality, we classify sites into classes that share similar characteristics;

MCMC-Bayesian calibrations (using CLM or its surrogates) will be conducted at representative sites within each class to test/confirm the parameter transferability among all MOPEX basins.

> Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Acknowledgement

- DOE: Climate Science for a Sustainable Energy Future
- PNNL:Platform for Regional Integrated Modeling and Analysis (PRIMA) initiative

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965 19

Summary of significance over flux towers

Proudly Operated by Battelle Since 1965

warmer = more significant seasonal Latent heat flux lan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fmax Cs Fover Fdrai Qdm Sy В Psi Ks Thetas

Sensible heat flux

Total runoff

В

Psi

Sensible heat flux

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
5							1.1					

Total runoff

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Fmax												
Cs												
Fover												
Fdrai												
Qdm												
Sy												
В												
Psi												
Ks												
Thetas												

Posterior distributions based on the 3parameter inversion at US-MOz

Proudly Operated by Battelle Since 1965

