Land Model and Biogeochemistry Working Groups Meeting Boulder, CO February 20-22, 2013

Modeling the Above and Below Ground C and N Stocks in Northern High Latitude Terrestrial Ecosystems

Atul Jain

University of Illinois, Urbana, IL 61801, USA Email: jain1@illinois.edu

> <u>Acknowledgements</u> Bassil El-Masri & Rahul Barman US DOE

Overall Objective

- Investigating the interactions between biogeophysical and biogeochemical processes in the Northern high latitudes using ISAM land surface model
 - how biogeochemistry (carbon and nitrogen dynamics) responds to improved biogeophysics (hydrology and energy) in the Northern high latitudes.

ISAM Land Surface Model

Model spatial and temporal resolution

- Spatial Resolution:0.5°x0.5°
- Biogeophysics Time step: 30 minutes
- Biogeochemistry Time step: 1 Week

Biogeochemical Processes

- Coupled C and N dynamics (Jain et al., 2009)
- Comprehensive above and below ground litter and SOM decompositions (*Yang et al., 2009*)
- Land Cover and Land Use Change, including secondary forest dynamics (*Yang et al., 2010*)
- Dynamic rooting depth formulations, vegetation phenology (Arora and Boer, 2005)

Biophysical Processes

- Above-ground canopy biogeophysics from the CoLM pocesses
- Originally, soil hydrology adapted from the NCAR CLM3.5
- Many Further modifications in biogeophysics, including recent advances in vegetation, soil, snow interactions

Modeling Strategy

- Integrated recent improvements in canopy, soil/snow, and carbon-nitrogen cycle processes in the ISAM
- Evaluate the model processes with several data sets

<u>Biogeophysics</u>

- site level FLUXNET eddy-covariance data: *Baldocchi et al. (2001)*
- globally upscaled FLUXNET data: Beer et al. (2010); Jung et al. (2011)
- GRDC Runoff: Fekete et al. (2002)
- permafrost extent: Brown et al. (2002)

<u>Biogeochemistry</u>

- Harmonized World Soil Database (HWSD): (FAO/IIASA/JRC, 2012)
- Northern Circumpolar Soil Carbon database: Tarnocai et al. (2009)
- Long-Term Intersite Decomposition Experiment Team (LIDET) plant litter data : LIDET (1995)

Improving the Representation of Soil & Snow Thermal Processes in ISAM

- 1. Processes impacting soil thermal conductivity & heat capacity
 - a. soil organic carbon
 - b. representation of deep soils [Lawrence and Slater (2008): CLM]
- 2. Processes impacting snow thermal regime
 - a. melting
 - b. thermal ageing
 - c. weight compaction of snow
 - d. wind compaction of snow [Schaefer et al. (2009): SiB-CASA]
 - e. depth hoar (DH) development [Schaefer et al. (2009): SiB-CASA]
- 3. Most models have not accounted for wind compaction of snow & depth hoar development, which are thought to be very important for the NHL

Incorporation of Newer Datasets

Soil organic Carbon dataset

HWSD Organic Carbon @ 1m Soil

ISAM Estimated Wind Compaction Effect on Snow Depth

Significant decrease of Snow Depth in Tundra snow class

Barman et al. 2013c (to be sub.)

Implementation of Depth Hoar (DH) Fraction and Depth in ISAM

Barman et al. 2013c (to be sub.)

Improving the ISAM Using FLUXNET Data

Litter Decomposition Module -Model Calibration and Evaluation Sites

- Litter C and N data from the LTER sites (Arctic and Bonanza) were used to calibrate/evaluate the ISAM
 - above and below ground litter decomposition rates and
 - carbon release and N amount remaining.

Observed and Modeled Mass of C Remaining and N concentration of Decaying <u>Leaf Litter</u>

Red Line: 1.97 % N & 10.8 % Lignin Black Line: 0.38% N & 16.2% Lignin

Observed and Modeled Mass of C Remaining and N concentration of Decaying Root Litter

Red Line: 0.76% N & 16.1% Lignin Black Line: 0.82% N & 34.9% Lignin

Fraction of Initial litter N Remaining as a Function of the Leaf Litter Mass Remaining

ARC: Artic Tundra BNZ: Bonanza Boreal

Fraction of Initial Litter N Remaining as a function of <u>Root Litter</u> Mass Remaining

ARC: Artic Tundra BNZ: Bonanza Boreal

GPP, Energy and Water Fluxes: ISAM Evaluation

ISAM simulations (1985 - 2010) using the CRU-NCEP reanalysis dataset; land-cover and land-use change datasets from *Meiyappan and Jain (2012)*

Modeled vs. Measured Global Soil C

Modeled

1086 G†C

HWSD

1255 GtC

NCSCD

Modeled vs. Measured NHL Soil C (Unit: Kg C/m²)

ISAM Simulations

• Sensitivity of four processes/variables

- a. Deep soil representation
- b. Soil organic carbon
- c. Wind compaction of snow
- d. Depth hoar formation
- Six model simulations:
 - a. NEW: include all four processes (standard model version)
 - b. OLD: exclude all four processes
 - c. NODS: only exclude deep soils from NEW
 - d. NOSOC: only exclude soil organic carbon from soils from NEW
 - e. NOWS: only exclude no wind effects from NEW
 - f. NODH: only exclude depth hoar effects
- CRU_NCEP meteorology, HYDE land-cover dataset: Meiyappan and Jain (2012)

Permafrost Extent: Impact of Added Model Processes

Area Containing Near Surface Permafrost (45-90°N)

Permafrost Degradation: Impact of Added Model Processes

Permafrost Degradation: Impact of Added Model Processes

Impact of Added Processes on Permafrost Soil Temperature & Hydrology (model spun up for ~30,000 years) Change in soil temperature (°C) Deep Soils

Deep Soils

Modifies the thermal dynamics in the soil by changing the tem gradient from top to bottom of soils ; usually cool the lower soil layers

Soil Organic Carbon

Impact the soil thermal conductivity

Wind Compaction

Cooler Soil Temp due to more efficient heat flow out of the soil in winter

DH

Warmer soil temp because DH has low thermal conductivity

Impacts of Biogeophysics Improvements on Permafrost GPP, NPP, Soil C & N (model spun up for ~30,000 years)

 $(\Delta = \text{New minus Old})$

Comparison of ISAM Estimated Soil Carbon With Datasets (HWSD & NCSCD) and CMIP5 Models

Modified based on Todd-Brown et al (2012)

Comparison of ISAM Estimated Soil Carbon With Datasets (HWSD & NCSCD) and CMIP5 Models

Modified based on Todd-Brown et al (2012)

Conclusions

- Improvements in biogeochemistry processes alone do not help to improve the soil biogeochemistry
- Improvements in soil data and biogeophysical processes improve the characteristics of the permafrost and soil biogeochemistry
- In-situ observational for the NHL are infrequent/scarce, which hinders the model evaluation process

Extra Slides

Impact on Soil Temperature & Hydrology on GPP: Averaged Over 2000-2004

Change in soil temperature ($^{\circ}C$) Change in GPP

DII Temperature [NEW CRUNCEP_HYDEC - OLD CRUNCEP_HYDEC]

Impact of Added Processes on Soil Temperature & Hydrology : Averaged Over 2000-2004

Change in soil temperature ($^{\circ}C$)

erature [NEW CRUNCEP_HYDEC

<u>Deep Soils</u>

 Modifies the thermal dynamics in the soil by changing the tem gradient from top to bottom of soils ; usually cool the lower soil layers

Soil Organic Carbon

 Impact the soil thermal conductivity

Wind Compaction

 Cooler Soil Temp due to more efficient heat flow out of the soil in winter

DH

 Warmer soil temp because DH has low thermal conductivity

Impacts of Biogeophysics Improvements on Permafrost GPP (model spun up for ~30,000 years) soil temperature (°C) Change in GPP

Change in soil temperature (°C)

Change in soil liquid water content

Impacts of Biogeophysics Improvements on Permafrost Soil C Accumulation (model spun up for ~30000 years)

Change in soil liquid water content

<u>Change in soil temperature (°C)</u> Change in Soil Carbon (NEW - OLD)

Improving the ISAM Using FLUXNET Data

V_{cmax25} ^{opt} f(N): Maximum carboxylation capacity, down-regulated by nitrogen

- V_{cmax25} ^{opt} f(N) in ISAM consistent with observed
 estimates from the TRY database [Kattage at al.,
 2009]
- NHL ecosystems:
 - Implementation of low temperature stress on GPP reduced winter GPP bias, and also allowing for the use of V_{cmax25} ^{opt} f(N) consistent with observations
 - Temperate & boreal forests: radiation, humidity & water-limited response to GPP
 - Cold grasses & cold shrubs: water-stress related response to GPP (i.e., dependent on precipitation, humidity, cold temperature)
 - Tundra: Temperature-limited response to GPP

Barman et al. 2013a (to be sub.)

Improving the ISAM Using FLUXNET Data

Latent Heat (LE) & Sensible Heat (H) fluxes

Barman et al. 2013b (to be sub.)

Analysis of meteorology-driven model biases

Impact on Latent Heat (LE) & Sensible Heat (H) fluxes

1. High energy/water flux biases observed using the NCAR-NCEP dataset; henceforth, the **CRU-NCEP** dataset was chosen as the primary driver for the model simulations

Permafrost degradation: impact of dataset uncertainties

