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What is this talk about? 

• Aim: Can the calibration of CLM be achieved using surrogates? 
– With quantified uncertainty 

 
• Difficulty: 

– Bayesian calibration require 103 runs of CLM4SP, and 104-105 runs 
of CLM4CN;  

– One obvious solution: a quick-running surrogate model of CLM 
 

• Technical challenge: 
– What does the model look like? 
– How many CLM runs does it require to make the model? 
– Are there complexities in the calibration? Artifact of the surrogate? 

 



Study site and data 

• Calibrate the three 
significant hydrological 
parameters of the CLM with 
quantified uncertainty 
– Data: measurements of 

Latent Heat (LH), 1997-
2004, US-MOz site 

– Bayesian calibration – 
develop a joint distribution 
of the most sensitive CLM 
parameters (Fdrai, log(Qdm), 
Sy) with LH data 
 

Ranks of significance of input parameters in CLM4 

Larger sensitivity to 
parameters of 
subsurface processes 

Hou et al. (2012) 



Steps in calibration process 

• Construction of surrogate models 
– Run CLM for 282 values of {Fdrai,Qdm,Sy}, sampled from the 

parameter space (lower & upper bounds are known); output LH(t) 
– Postulate competing polynomial models LH(t) = g(Fdrai,log(Qdm),Sy;t) 
– Fit to data: model selection based on Bayesian Info. Criterion 

• Calibration – is there a unique set of {Fdrai,log(Qdm),Sy} that 
explains LH observations at US-MOz? 
– Perform optimization-based model fitting using surrogate models 

• Bayesian calibration 
– Fit surrogate to US-MOz data using Markov Chain Monte Carlo 
– Check if results are sensitive to the surrogate model 

• If the surrogates were made with half the CLM runs, would {Fdrai, 
log(Qdm), Sy} be different?  



Making a polynomial fit 

• Propose multiple polynomial models of different orders 
 

 
 

• Separate 282 CLM runs into 500 (Learning-Set/Testing-Set pairs) 
– The testing set has 50 runs in it 

• Fit polynomial to Learning Set using sparsity-enforced fitting 
– Called Bayesian compressive sensing (BCS) 
– Calculate error of fit in the Learning Set 

• Use the fitted polynomial model to predict the LH for the {Fdrai,Qdm,Sy} 
values in the Testing Set 

– Calculate error in Testing Set 

• We expect that polynomial models are equally predictive in the Learning 
and Testing Sets 
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Visualizing relative errors across months 

• Linear and quadratic models have similar errors for LS and TS 
– No overfitting here 

• But quadratic model has lower errors overall, so choose it. 



Augmenting the quadratic model 

• Quadratic model has pretty large 
error (~17%) 
– Because it captures no more than the 

trend of log(LH) in p-space 

• y(surr)(p) = y(quad)(p) + c(p), c is a 
correction 
– It is smooth (correlated) function of p 
– Model c(p) as a multivariate Gaussian 

• With c(p) model, we can evaluate 
y(surr)(p) at arbitrary p 
– Includes a quadratic prediction 
– And a correction interpolated from the 

232 runs 

Augmented model give max 10% 
error 



Deterministic model fits to LH observations 

• Deterministic fit (w/ surrogate) and “nominal values” look similar 
– But errors sum to zero in the surrogate case 

Predictions with calibrated surrogate CLM predictions with nominal values 



Calibrated values are non-unique! 

• Blue symbols: 
starting points 

• Red symbols: 
Converged/stopping 
points 

• Green symbol: 
starting & ending 
points, starting from 
nominal values 



…. And they are all equally good! 

• Green: converged solution, 
starting from nominal 
values 

• Blue: all other 13 
converged solution 

– No noise added! 

• Error bars: 1σ error 
between green and 
observations 

• Repeat runs with a set of 3 
calibrated parameter with 
real CLM 

– Dashed lines 

• Bottomline: Variation 
caused by various 
converged values 
negligible compared to 
CLM – observation misfit 



MCMC calibration 

• Since there seem to be multiple, equally good,  calibrated 
values of {Fdrai,Qdm,Sy}, is there a distribution that we should 
target? 
– What does this distribution look like? 

• Construct distribution via MCMC 
– Have 3 different starting points and estimate {Fdrai,Qdm,Sy}  
– Model the structural error as i.i.d. Gaussian; estimate it 
– See if they provide (1) converged distributions or (2) converged 

summary statistics like 25th, 50th and 75th percentiles of  

• How do summary statistics compare with 
– Nominal/default values of {Fdrai,Qdm,Sy} in CLM 

• How big is the model – data error (model structural error)? 



Posteriors and nominal values 

• MCMC required 
105 model 
evaluations to 
converge 

• Vertical lines are 
nominal values 

• Nominal value for 
σ2 is from the 
deterministic fit of 
surrogate 

• Surrogate model 
constructed from 
282 CLM runs 

12 



Posterior predictive test (282 v/s 128 runs) 

• Surrogate model constructed with < ½ the runs has similar predictive skill 
• Dashed lines are 3 runs done with CLM 

– the predictions are not artifacts of the surrogate model 

128 runs 
surrogate 

282-run calibration 128-run calibration 



Summary statistics from 3 MCMC runs 

• Means & quantiles of posterior samples from the 3 MCMC runs do not vary much 
• They don’t deviate much from the nominal values either, except for Qdm 

• The best deterministic run gives a smaller model-data error 

 

Parameters Run 1 
Mean 

(25th, 50th, 75th) PC 

Run 2 
Mean 

(25th, 50th, 75th) PC 

Run 3 
Mean 

(25th, 50th, 75th) PC 

Best deterministic 
model 

Start Point {2.5, 5.5e-3, 2.0e-1} {3.0, 1.0e-3, 2.5e-1} {1.5, 7.5e-3, 1.5e-1} {0.945, 2.28e-4,  
0.26} 

Fdrai 
(2.5) 

2.69; 
(1.25,2.8,3.72) 

2.71;  
(1.3, 2.94, 3.96) 

2.71;  
(1.26, 2.94, 3.97) 

2.64e-01 

Q dm 
(5.5e-3) 

1.66e-3; 
(6.9e-6, 9.6e-5,2.0e-3) 

1.76e-3; 
(6.8e-6, 8.6e-5, 2.4e-3) 

1.76e-3; 
(7.0e-6, 8.6e-5, 2.2e-3) 

4.889e-03 

S y 
(0.2) 

2.14e-1; 
(1.9e-1, 2.2e-1,2.4e-1) 

2.14e-1; 
(1.9e-1, 2.2e-1, 2.4e-1) 

2.14e-1; 
(1.9e-1, 2.2e-1, 2.4e-1) 

2.698e-01 
 

σ 2 0.035; 
(0.024, 0.031, 0.043) 

0.036; 
(0.024, 0.032, 0.043) 

0.036 
(0.024, 0.032, 0.043) 

0.0255 



US-MOz 

LH
 (W

/m
2)

 P=1.0 

P= 0.95 

P= 0.9 

Default 

Observation 

P= 0.5 

MCMC inversion with CLM (not surrogate) 

CLM simulations of LH using default 
parameters and MCMC-inverted posteriors 
P — reference acceptance probability Posterior distributions of the three significant 

parameters through MCMC inversion 

Y. Sun, Z. Hou, M. Huang, F. Tian, L. Leung, Inverse Modeling of Hydrologic Parameters Using Surface Flux and 
Streamflow Observations in the Community Land Model, to be submitted to Hydrology and Earth System 



Conclusions 

• CLM has non-unique solutions  
– Requires calibration in the form of distributions 

• Bayesian methods allow us to estimate parameters as 
distributions 
– Even for expensive models like CLM 
– Allow probabilistic predictions, that enable us to quantify risk of 

failure / error in predictions 

• Surrogate models often require significant sophistication to 
construct 
– Using sparsity-enforced model fitting to find the most parsimonious 

polynomial model 
– And adding a kriging component for local interpolation/structure in 

CLM’s behavior in Fdrai-Qdm-Sy  space 



BONEYARD 



Surrogate model and calibration 

• Model: Log(LH) = quadratic function of (Fdrai,Qdm,Sy) + correction 
– Quadratic model coefficients calculated from 232 CLM runs 

(Learning set); serves as a “trend” in a kriging model 
– Correction obtained by kriging interpolation from 232 data points 
– Prediction error ~ 5-10%, calculated from Testing Set (50 runs) 

• Other models (linear & and higher order) investigated and 
rejected using BIC 

• Calibration first done with L-BFGS, driving surrogate mode 
– To investigate the nature of the calibration problem 

• Calibration redone in a Bayesian setting 
– Use MCMC to develop joint distribution of (Fdrai,Qdm,Sy)  
– Quantify uncertainty in calibrated values 
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