Sensitivity of site-level CLM simulations to input meteorology

Daniel Ricciuto (presenting) Jiafu Mao Peter Thornton

CESM LMWG/UQ session February 21st, 2013

Framework for PTCLM multisite ensembles

CAK RIDGE NATIONAL LABORATORY

Gap-filled tower driver datasets

- Tower observations usually have ~10-20% gaps in meteorological observations (power outages, quality control, etc.)
- Gaps are filled with:
 - Nearby flux towers (within 50 km and 100m elevation)
 - Nearby NCDC reporting station, bias corrected (hourly or if daily, diurnal cycle imposed using simple relationships) – T, precip, sometimes cloud cover
 - Multiyear mean monthly diurnal cycle
- CLM forcing files currently available for NACP flux tower sites (~45 sites)
- Can be generated for FLUXNET sites on demand.
- Can extract single-point reanalysis datasets to CLM format

Summary of selected reanalysis products

Product	Spatial resolution	Temporal resolution (hr)	Reference
Tower observed	Site-level	0.5 or 1	Ricciuto et al. (in prep)
CRU-NCEP	0.5° x 0.5°	6	Viovy and Ciais
ERA-interim	1.5° x 1.5°	6 or 12	Uppala et al. (2005)
NARR	32km	3	Mesinger et al. (2004)
NCEP	1.9° x 1.9°	6	Kalnay et al. (1996)
NCEP2	1.9° x 1.9°	6	Kalnay et al. (1996)
NLDAS*	1/8º x 1/8º	1	Cosgrove et al. (2003)
Daymet	1km	24*	Thornton et al. (2012)
Princeton	1º x 1º	3	Sheffield et al. (2006)

Radiation biases in reanalysis products

Average over 34 AmeriFlux and FLUXNET Canada sites

Highest bias overall under cloudy conditions (except ERAinterim)

CRU-NCEP, Princeton (Sheffield) product have lower biases overall but low-biased under high-light (correction factor applies on a monthly basis)

ak Ridge National Laboratory

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Wavelet analysis of selected products

Coherence

ERA-interim

NCEP

Sheffield

OAK RIDGE NATIONAL LABORATORY

Biases in radiation and precip by site-year

CAK RIDGE NATIONAL LABORATORY

CLM4-CN version

limate Change

- clm4_0_40 ORNL
- Simulations for 8 sites, 6 products
- Modifications:
 - Plant N pool
 - Site-level harvest
- T-sensitivity
 - Q10_Vcmax modification
 - Cold-temperature photosynthesis modification

Oak Ridge National Laboratory

Differences in CLM-CN model output

UMBS site (Michigan)

Same years used for spinup/transient simulation

Large differences in soil carbon, LAI (up to 3x)

Simulations driven by tower forcing \rightarrow lower stocks, productivity

Observed forcing and fluxes \rightarrow more variability

Hypotheses: Radiation bias, variability, precipitation distribution

Comparison of simulated diurnal cycles

Radiation biases do not explain differences in NEE Compensating effects (precipitation, variability in T, P, SRad) More analysis needed

Effects on interannual variability

Take-home messages

- Using site-level forcing results consistently in less carbon and lower fluxes
 - Lower solar radiation, precipitation distribution and higher variability
 - If using site-level runs to do model tuning/validation, may not be relevant at global scales.
- The choice of reanalysis forcing dataset matters
 - Large source of uncertainty in predicted carbon balance (factor of 2)
 - Both long timescale biases and short-term variability are important
- Driver uncertainty should be considered in overall uncertainty analysis
 - As important or more important than parameter, structural differences

