Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition

R. Quinn Thomas^{1,2}, Gordon Bonan¹, & Christine Goodale²

¹National Center for Atmospheric Research ²Cornell University

Different model structures, different predictions for carbon-interactions

Example: N fertilization response in CLM-4.0 and O-CN models

CLM-CN \triangle Net Primary Productivity

O-CN \triangle Net Primary Productivity

Thomas, Zaehle, Templer, and Goodale. In prep

Carbon response to N addition: Nitrogen deposition vs. nitrogen fertilization

Carbon response to N addition: Nitrogen deposition vs. nitrogen fertilization

Questions

How do predictions of ecosystem carbon response to N fertilization and N deposition in the CLM-CN compare to observations?

How sensitive is the response to assumptions about the structure of the nitrogen cycle in the CLM-CN?

Alternative versions of the CLM-CN

- Michaelis-Menten plant N uptake
- Reduced N fixation in mature extra-tropical forests
- Removed N gas loss that is 1% of net mineralization
- Denitrification based on environmental conditions
- Soil NH_4^+ and NO_3^- pools

Model simulations: site-level

5 sites, 6 fertilization experiments (4 in Michigan, 1 in Massachusetts) 10+ years of observations

- 1850-2004 transient simulations for each site
- Simulation with transient N deposition
- Simulation holding N deposition at 1850 levels
- Simulation with transient N deposition and N fertilization to match the study
- Transient CO₂, land-use, and climate
- Used 1850 steady-state as initial conditions

N budget: 1850 steady-state averaged across 5 sites

Flux	clm4cn	clm4mod
Nitrogen fixation	1.3 ± 0.1	0.26 ± 0.01
Nitrogen deposition	0.15 ± 0.01	0.15 ± 0.01
Nitrogen gas loss	1.4 ± 0.1	0.26 ± 0.01
Mineral nitrogen leaching	0 ± 0	0.07 ± 0.01
DON leaching	NA	0.1 ± 0.004
Plant nitrogen uptake	6.2 ± 0.67	6.9 ± 0.29
Net nitrogen mineralization	6.1 ± 0.66	6.5 ± 0.25
Nitrification	NA	3.6 ± 0.06

g N m⁻² yr⁻¹

Model comparison to data: NPP response to N fertilization

Model comparison to data: C increment response to N deposition

Model comparison to data: Retention of ¹⁵N Tracer studies

Response to N deposition: Which modifications were most important?

Larger role of synergy between CO₂ and N deposition

 In temperate forests CLM-CN 4.0 is too responsive to pulse additions of large amounts of N (N fertilization)

- In temperate forests CLM-CN 4.0 is too responsive to pulse additions of large amounts of N (N fertilization)
- CLM-CN 4.0 is not responsive enough to gradual increases in N (N deposition)

- In temperate forests CLM-CN 4.0 is too responsive to pulse additions of large amounts of N (N fertilization)
- CLM-CN 4.0 is not responsive enough to gradual increases in N (N deposition)
- A modified version of the CLM-CN increased N retention, decreased N fertilization response, and increased N deposition response

- In temperate forests CLM-CN 4.0 is too responsive to pulse additions of large amounts of N (N fertilization)
- CLM-CN 4.0 is not responsive enough to gradual increases in N (N deposition)
- A modified version of the CLM-CN increased N retention, decreased N fertilization response, and increased N deposition response
- The N deposition response was most sensitive to the structure of plant N uptake and N loss pathways

- In temperate forests CLM-CN 4.0 is too responsive to pulse additions of large amounts of N (N fertilization)
- CLM-CN 4.0 is not responsive enough to gradual increases in N (N deposition)
- A modified version of the CLM-CN increased N retention, decreased N fertilization response, and increased N deposition response
- The N deposition response was most sensitive to the structure of plant N uptake and N loss pathways
- Currently adding M-M N uptake to CLM-CN 4.5

Questions?

Thomas, R Q, G. B. Bonan, and C. L. Goodale. 2013. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition. Biogeosciences Discussions 10:1635–1683.

Funding from NSF NSF-ETBC 1021613 and Cross-Scale Biogeochemistry and Climate IGERT