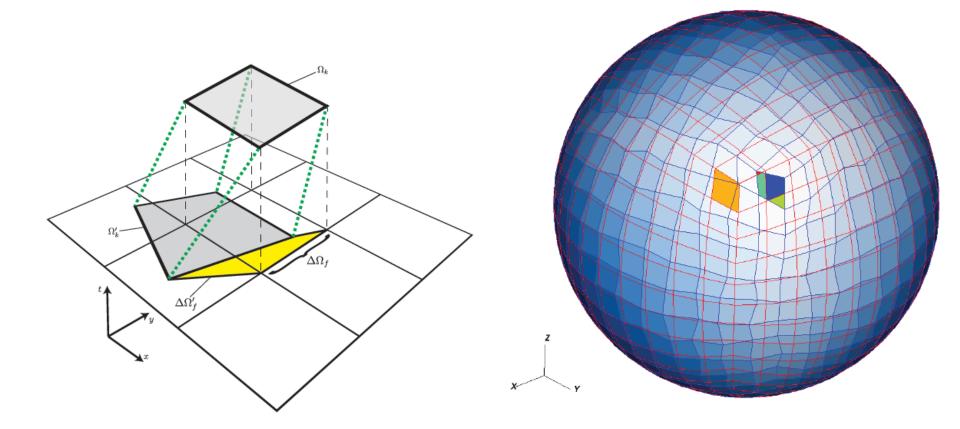
Applying Computational Efficient Schemes for Biogeochemistry ACES4BGC

Philip Cameron-Smith

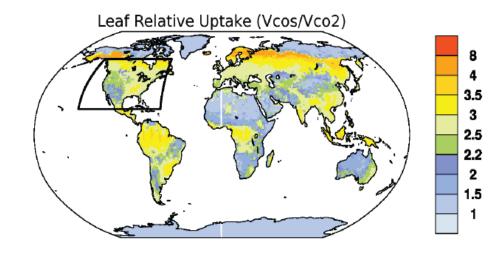

(pjc@llnl.gov)

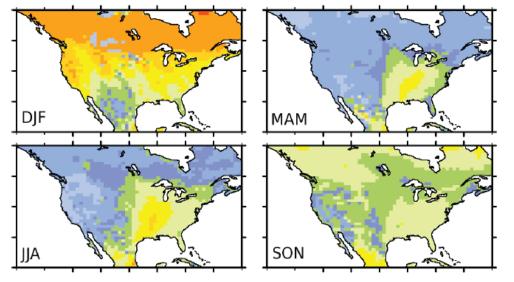
Don Lucas


ACES4BGC team

www.aces4bgc.org

Lawrence Livermore National Laboratory

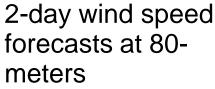



Implementing efficient advection algorithm for thousands of tracers

Incremental remapping using the FASTMath MOAB technology for unstructured, variable resolution grids.

Focus on Earth System Modeling

- Aerosol schemes (SECT & MAM),
- Emissions of biogenic VOCs, Uptake of COS (to constrain photosynthesis),
 - Biogeochemical interactions between atmosphere, land, and ocean,
 - UQ to constrain process parameters and feedbacks,
 - Performance engineering for DOE supercomputers.


Leaf relative uptake of COS uptake in CLM (Fu et al., in prep.).

ACES4BGC Team

Name	Lab	Science Team	Торіс
Pavel B. Bochev	SNL	Atmosphere	Advection
Philip J. Cameron-Smith [†]	LLNL	Atmosphere	Atm. BGC
Richard C. Easter, Jr.	PNNL	Atmosphere	Aerosols
Scott M. Elliott [†]	LANL	Ocean	Ocean BGC
Forrest M. Hoffman [†]	ORNL	Land	Land BGC
Xiaohong Liu	PNNL	Atmosphere	Aerosols
Robert B. Lowrie	LANL	Ocean	Advection
Donald D. Lucas	LLNL	Atmosphere	UQ
Richard T. Mills	ORNL	Comp. Tools & Perf.	Performance
Timothy J. Tautges [‡]	ANL	Comp. Tools & Perf.	Mesh Tools
Mark A. Taylor	SNL	Atmosphere	Advection
Mariana Vertenstein	NCAR	Comp. Tools & Perf.	SE
Patrick H. Worley ^{†‡}	ORNL	Comp. Tools & Perf.	Performance

[†]Science Team Lead [‡]SciDAC Institute Liaison

UQ for wind energy show source of uncertainty

Ensemble spread from 11 parameters

PDF


5.0

4.5

5.5

6.0

Wind Speed (m/s)

6.5

LLNL Chem-Aerosol Activities

- Sectional aerosol scheme (SECT) queued for trunk.
- Coupled super-fast mechanism to MAM for CAM5.
- Connect atmospheric chemistry to biogenic emissions.
- Implement OCS and CO¹⁸O tracers.
- Revitalize tracer test-suite in CAM with ²²²Rn/²¹⁰Pb and SF₆
- Tracer conservation algorithms for MOAB.

UQ Activities

- Quantify sensitivities and uncertainties of atmospheric chemistry and biosphere-atmosphere interactions (O₃, NO_x, VOCs, SOA formation)
- Challenged by the "Curse of Dimensionality" Brute force sampling ~ M^N for M levels and N sources of uncertainty (about 10¹⁰⁰, a *googol*, for MOZART chemistry)
- Use computational and statistical methods to overcome the "Curse"
 - Single column ensembles with CAM5Chem
 - Latin hypercube sampling and machine learning based feature selection to reduce the dimensionality
- Apply UQ framework to calibrate/validate model chemistry with observations (targeting GOAMAZON)