Measurements and Modeling of Contemporary Carbon-14 Levels in the Stratosphere to Constrain Stratospheric Dynamics & the Global Carbon Cycle

A. M. Kanu^{1,3}, L. L. Comfort¹, T. P. Guilderson², P. J. Cameron-Smith³, D. J. Bergmann³, E. L. Atlas⁴, S. Schauffler⁵, K. A. Boering⁶

- 1. Department of Chemistry, University of California, Berkeley
- 2. Center for Accelerator Mass Spectrometry, LLNL
- 3. Atmospheric, Earth, and Energy Division, LLNL
- 4. Division of Marine and Atmospheric Chemistry, University of Miami
- 5. Atmospheric Chemistry Division, NCAR
- 6. Department of Earth and Planetary Science, University of California

¹⁴CO₂ as a Tracer in the Stratosphere

Background is ⁷Be production from Koch & Rind 1998

Balloon Sampling _____ Fall 2003, 2004, & 2005

Accelerator Mass Spectrometry (LLNL CAMS)

Model Setup

- IMPACT: LLNL chemistry transport model,
- ✤ 1960-2006 simulations,
 - (many e-fold times needed for spinup),
- ✤ 3 different GCM metdata.
- ✤ 3 tracers:
 - ➢ ¹⁴C-trop (historical surface concentrations),
 - ➢ ¹⁴C-strat (cosmogenic prod. in strat; zero in trop),
 - > N_2O (historical surface concentrations + strat loss).

- Model vertical profiles generally match obs.
- ✤Note Seuss effect (2003->2004->2005).
- Deviations from model could be described by transport from other latitudes.

- Model vertical profiles generally match obs.
- $Note N_2O$ annual increase is small.
- ✤Path of chemical loss is longer than from ¹⁴C production.

N2O relation to 14C seems to be captured, except 2005 (signature of different transport?).

N₂O relation to ¹⁴C seems to be captured by different metdata corresponding to an extreme stratospheric circulation year.

Conclusions

- ✤IMPACT model seems to give reasonable simulation.
- ⁴¹⁴C observations give additional information about stratospheric dynamics.
- Results will help constrain natural ¹⁴C production rate, with implications for carbon cycle studies.

Future

- Run with assimilated (observed) meteorology.
- ✤Run with solar-cycle effect on ¹⁴C production.

The End

Archived CO₂ Samples at UCB: Spatial (5S-88N) and Temporal (1996-2007) Distribution

¹⁴CO₂ is a Fossil Fuel CO₂ Tracer

- Atmospheric CO₂, Δ^{13} C, and Δ^{14} C as reconstructed in tree-rings and ice cores for the pre-atmospheric weapons testing. The decrease in Δ^{14} C and Δ^{13} C is caused by the burning of fossil fuels.
- Present day atmospheric ¹⁴CO₂ has returned to near "pre-bomb" levels.

Carbon Cycle Partitioning of Bomb¹⁴C

Levin and Hesshaimer. Radiocarbon, 42 (1), 2000.

