Global modelling of upper tropospheric-lower stratospheric iodine: budget and implications for ozone

Alfonso Saiz-Lopez, Carlos Ordóñez, Juan Carlos Gomez Martin (Laboratory for Atmospheric and Climate Science, CIAC-CSIC, Toledo, Spain)

Jean-François Lamarque, Douglas E. Kinnison, Simon Tilmes (NCAR, Boulder, CO, USA)

Motivation

"On the role of iodine in ozone depletion", Solomon et al., JGR, 1994

Solomon et al., JGR, 1994

Solomon et al.,: "iodine loadings of 1 pptv and rapid inter-halogen photochemical reactions involving iodine could be of substantial importance to ozone loss in the lowermost stratosphere".

Motivation

Solomon et al., JGR, 1994

Since then:

- New kinetic information on iodine available
- Attempts to detect reactive iodine in the UTLS

Wennberg et al., JGR,1997 Pundt et al., JAC,1998 Wittrock et al., GRL,2000 Berthet et al., JGR,2003 Bösch et al., JGR,2003 Butz et al., ACP,2009

Most recent analysis: < 0.1 pptv IO, OIO in lower stratosphere in northern high and mid-latitudes, and tropics

Estimated total inorganic iodine: ~ 0.2 pptv I_y (Photochemical 1-D model)

- 1) Budget and partitioning of iodine species in the global UTLS using CCM
- 2) Re-evaluation of suggested role of iodine in UTLS O₃ destruction
- 3) Relative contribution of iodine to halogen-driven UTLS O_3 destruction

Model Setup

CAM-Chem (Lamarque et al., Geosci. Model Dev. 2012):

- Global Chemistry-Climate Model
- 1.9° (lat) x 2.5° (lon) horizontal resolution
- 26 vertical levels (surface to ~ 4 hPa)
- time step = 30 min

Tropospheric Halogen Chemistry

- Implementation of VSL (lifetime < 6 months) halogenated sources from the ocean.
- Emissions following Chl-a over tropics
- Catalytic release from sea-salt
- Photochemistry
- Dry / wet deposition
- 160 species, 427 reactions

VSL halogen sources in CAM-Chem

Source gas	Local Lifetime (WMO, 2010)	Main loss	_
CH ₂ BrCl	137 days	OH, hv	
CH_2Br_2	123 days	OH, hv	
CHBrCl ₂	78 days	OH, hv	
CHBr ₂ CI	59 days	hv, OH	
CHBr ₃	24 days	hv, OH	
CH ₃ I	7 days	hv, OH	(Bell et al., 2002)
CH ₂ ICI	~ 2–3 h	hv	
CH ₂ IBr	~1 h	hv	
CH_2I_2	~ 5 min	hv	
I ₂	~ secs	hv	

Model Setup

CAM-Chem (Lamarque et al., Geosci. Model Dev. 2012):

- Global Chemistry-Climate Model
- 1.9° (lat) x 2.5° (lon) horizontal resolution
- 26 vertical levels (surface to ~ 4 hPa)
- time step = 30 min

Tropospheric Halogen Chemistry

- Implementation of VSL (lifetime < 6 months) halogenated sources from the ocean.
- Emissions following Chl-a over tropics
- Catalytic release from sea-salt
- Photochemistry
- Dry / wet deposition
- 160 species, 427 reactions

VSL halogen sources in CAM-Chem

Ordoñez et al., ACP, 2012 Saiz-Lopez et al., ACP, 2012

CAM-Chem: Bromine levels

Notes:

- SLIMCAT run with CH_3Br (9.6 ppt), halons (6.8 ppt), and VSLS (4 ppt as CH_2Br_2) plus PGs (1 ppt as HBr).
- Photochemical breakdown only in stratosphere.

Notes CAM-Chem:

- Halons = H-1211 + H-1301 (i.e. $CF_2CLBR + CF_3BR$) - VSLS = 3 $CHBr_3 + 2 CH_2Br_2 + CH_2BrCl + 2 CHBr_2Cl + CHBrCl_2$ - Total $Br_v = Br + BrO + HBr + BrONO_2 + BrCl + HOBr$

lodine species: profiles and I_v (no photolysis of I_2O_v)

Measured TTL to CPT abundances (Table 1-9 of WMO, 2011): : IO, OIO PG < 0.1 ppt (Upper limits reported by Butz et al., 2009) Table 1-7 indicates a mean of 0.12 ppt (range 0.00-0.23 ppt) CH₃I for the lower TTL (12-14 km)

lodine species: profiles and I_v (no photolysis of I_2O_v)

Measured TTL to CPT abundances (Table 1-9 of WMO, 2011): : IO, OIO PG < 0.1 ppt (Upper limits reported by Butz et al., 2009) Table 1-7 indicates a mean of 0.12 ppt (range 0.00-0.23 ppt) CH₃I for the lower TTL (12-14 km)

lodine species: profiles and I_v (no photolysis of I_2O_v)

Measured TTL to CPT abundances (Table 1-9 of WMO, 2011): : IO, OIO PG < 0.1 ppt (Upper limits reported by Butz et al., 2009) Table 1-7 indicates a mean of 0.12 ppt (range 0.00-0.23 ppt) CH₃I for the lower TTL (12-14 km)

Iodine species: IO/I zonal averages

Zonal averages of atomic iodine and IO:

Tropical "iodine mushroom cloud"

Largest loading of IO_x is not in the MBL

01/2001 01/2001 I (halogen_iodine_30) IO (halogen_iodine_30) 30 0.50 0.50 0.25 pressure (hPa) 20 E 0.20 0.20 0.15 0.15 0.12 200 200 0.09 10 10 400 0.06 400 500 600 500 600 0.03 800 800 1000 -50 50 -50 lat (°) lat (°)

- Height shift in the I and IO concentration peaks

Peak I height: 10-12 km

Peak I height: 5-8 km

Iodine and bromine species: profiles and lat. variation

Annually average profiles in tropics:

Iodine and bromine species: profiles and lat. variation in LMS 10

Annually average of latitudinal dependence of X/XO in LMS:

Halogen-driven ozone loss: BL and FT

Note: no ice emissions

included.

Ozone loss: Br/I contribution to trop. column - Global

Ozone loss: Br/I contribution to trop. column - Tropics

 $I_{2}O_{2} \text{ Chemistry in the model...}$ $IO + IO => I_{2}O_{2}$ $I_{2}O_{2} => OIO + I$ $I_{2}O_{2} => IO + IO$

 I_2O_3 Chemistry in the model... IO + OIO -> I_2O_3

 I_2O_4 Chemistry in the model... OIO + OIO -> I_2O_4 I_2O_4 -> 2*OIO

Ozone impact:

Ozone depletion efficiency by iodine is enhanced 2-3 times if I₂O_v photolysis is included !

- Oceanic sources and chemistry of iodine implemented in a CCM.
- Iodine partitioning shows high I/IO ratio in tropical UTLS
- Iodine-mediated ozone depletion, compared to bromine, is predominant throughout most of the troposphere and significant in the tropical LMS
- Experimental work on I₂O_y is key to further determine the role of iodine in UTLS O3 destruction

Methyl iodide (CH₃I)

aircraft (mean ± stdev)

model (mean \pm stdev)

Underestimation of CH_3I , and possibly of O_3 loss by iodine chemistry in the UTLS

Sensitivity runs: photolysis of I_2O_y

