

Aerosols in the CCSM4 based Norwegian Earth System Model - NorESM1-M: the role of natural aerosols for estimates of radiative forcing by anthropogenic aerosols

Alf Kirkevåg

with contributions from

Trond Iversen, Øyvind Seland, Corinna Hoose, Jon Egill Kristjánsson, Hamish Struthers, Annica Ekman, Steve Ghan, Jan Griesfeller, Douglas Nilsson, and Michael Schulz

NorESM components and interactions

AMWG talk by Trond Iversen:

NorESM fully coupled \rightarrow CMIP5 simulations

This talk:

CAM4-Oslo with data ocean and sea-ice → forcing simulations

(FV dynamical core, 1.9°×2.5° res., 26 levels)

Most of the results are from:

A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz: Aerosol-climate interactions in the Norwegian Earth System Model – NorESM1-M, Geosci. Model Dev., 6, 207-244, 2013.

See also the NorESM special issue: http://www.geosci-model-dev-discuss.net/special_issue21.html

New features in CAM4-Oslo / NorESM

compared to CAM-Oslo: -

Seland et al. (2008) Hoose et al. (2009) Struthers et al. (2011)

- New and enhanced natural aerosol components (vs. Seland et al., 2008):
 - Oceanic primary biogenic OM: emissions distributed as sea-salt and scaled to 8 Tg/yr globally (Spracklen et al., 2008)
 - MSA produced from the oceanic DMS included, treated as POM
 - Natural SOA produced from land vegetation and treated as POM is almost doubled (Hoyle et al., 2007)

• New processing of natural aerosols:

- Sea-salt emissions depend now on wind and temperature, updated Struthers et al. (2011)
- In-cloud scavenging coefficient for dust is reduced from 1 (Seland et al., 2008) to 0.25

• New treatment affecting both natural and anthropogenic aerosols (vs. Seland et al., 2008):

- OM/OC ratio for emissions of biomass burning POM: increased from 1.4 to 2.6 (Formenti et al., 2003)
- Updated tropospheric oxidant fields from Oslo-CTM2 (Berntsen et al., 1997)
- Rate of replenishment of H_2O_2 in cloud droplets changed from a fixed value of 1 h to 1-12 h, ~ $(1.1-cldmax)^2$
- Gravitational particle settling speed calculated at all heights
- <u>Pre-industrial</u> emissions were AeroCom 1750, now: IPCC AR5 1850 for aerosols and precursors
- Present-day emissions were AeroCom 2000, now: AeroCom 2006 or IPCC AR5 2000.

+ New cloud droplet spectral dispersion formulation (vs. Hoose et al., 2009) (Rotstayn and Liu, 2009) Schematic for aerosol processing in CAM4-Oslo

Norwegian Meteorological Institute met.no

Aerosol growth by:

- condensation of H₂SO₄
- coagulation of Aitken particles onto larger pre-existing particles
- cloud-processing/wet phase chemistry
- hygroscopic growth

Monthly near-surface aerosol mass concentrations

Clear-sky aerosol optical depth Remote sensed data AOD composite, MODIS-MISR-AERONET 60N 30N · EQ · 30S -60S · (pers. comm. Stefan Kinne)

6ÓW

0.1

0.15

180

120W

0.05

60E

0.4

0.3

Ó

0.25

0.2

120E

0.6

180

CAM-Oslo (Seland et al., 2008)

CAM4-Oslo

Bias (in %) compared to AERONET

clear-sky AOD

clear-sky ABS (absorption AOD)

http://aerocom.met.no/

Aerocom 2006 emissions

IPCC 2000 emissions (CMIP5)

Norwegian Meteorological Institute met.no

Sensitivity tests of mainly old versions of parameterizations in CAM4-Oslo coupled to *data* ocean & sea-ice models:

Identification	Short description	Se08=Seland et al., 2008)		
Ctrl	Standard Reference. All processes update Emissions years: PD = 2006; PRE = 1850	d.		
natOM	As Ctrl, but with natural OM as in Se08.		ᡝ	nat.
natOMocn	As Ctrl, but no biogenic OM from oceans a	nd MSA, as in Se08.		
bbPOM	As Ctrl, but OM/OC = 1.4, as in Se08.		}	nat. & anthrop.
Struthers11	As Ctrl, but tuning of sea-salt emissions as	in Struthers et al. (2011).		
dustscavin	As Ctrl, but in-cloud scavenging efficiency	for dust = 1, as in Se08.		
cldtunorig	As <i>Ctrl</i> , but tuning of cloud microphysics as (Neale et al., 2010).	s in NCAR CAM4		
gravdep2d	As Ctrl, but gravitational settling only in the	lowest model layer, as in Se08.		
convmix	As Ctrl, but convective mixing of aerosols a	and precursors as in Se08.		
noBCac	As Ctrl, but no primary emissions of BC(ac), i.e. all BC is emitted as BC(n).		
replH2O2	As Ctrl, but replenishment time of $H_2O_2 =$	1 h, as in Se08.		
no coating	As Ctrl, but without coating of dust and BC	in CCN-activation.		
prescrβ	As <i>Ctrl</i> , but effective cloud droplet radii par Hoose et al. (2009), and Neale et al. (2010	ameterized as in Se08,)).		
EmPD2000	As Ctrl (all processes updated). Emissions	years: PD = 2000; PI = 1850.	}	nat. & anthrop.
EmPI1750	As Ctrl (all processes updated). Emissions	years: PD = 2006; PI = 1750.	}	nat. (PI in IPCC AR4)
Online	As Ctrl, but with online interactions betwee atmospheric dynamics.	n aerosol forcing and	_	· · · · ·

DRF at TOA

InDRF at TOA

DRF at TOA

InDRF at TOA

DRF at TOA (W/m2)

bbPOM (OM/OC=1.4)

bbPOM - Ctrl

InDRF at TOA (W/m2)

Ctrl

natOM (less natural OM)

natOM - Ctrl

Model validation:

Aerosol surface concentrations and optical properties compare reasonably well with observations, giving similar or (mainly) improved validation results compared to earlier model versions (but more over-estimated POM in N-America)

Direct and 1.&2. indirect SW forcing at TOA and near ground surface:

• DRF most sensitive to assumed OM/OC ratio for biomass burning POM: + 0.07 \rightarrow - 0.07 Wm⁻² when OM/BC is changed from 1.4 \rightarrow 2.6

 o
 Basic emission years / inventories also important, especially for surface forcing:

 -0.10 Wm⁻² for year 2000 - 1850 (CMIP5)
 -1.04 Wm⁻²

 -0.07 Wm⁻² for year 2000 - 1750
 -1.36 Wm⁻²

 -0.07 Wm⁻² for year 2006 - 1850
 -1.89 Wm⁻²

 -0.04 Wm⁻² for year 2006 - 1750
 -2.20 Wm⁻²

• IndRF most sensitive to natural OM levels: - 1.90 \rightarrow - 1.20 Wm⁻² with the increased OM emission/production

and basic emission years / inventories:
 -0.91 Wm⁻² for year 2000 - 1850 (CMIP5)
 -1.23 Wm⁻² for year 2000 - 1750
 -1.20 Wm⁻² for year 2006 - 1850
 -1.53 Wm⁻² for year 2006 - 1750

Model validation:

Aerosol concentrations and optical properties compare reasonably well with observations, giving similar or (mainly) improved validation results compared to earlier model versions (but more over-estimated POM in N-America)

Direct and 1.&2. indirect SW forcing at TOA and near ground surface:

- DRF most sensitive to assumed OM/OC ratio for biomass burning POM: + 0.07 → - 0.07 Wm⁻² when OM/BC is changed from 1.4 → 2.6
- Basic emission years / inventories also important, especially for surface forcing: -0.10 Wm⁻² for year 2000 - 1850 (CMIP5)
 -1.04 Wm⁻²
 -0.07 Wm⁻² for year 2000 - 1750
 -1.36 Wm⁻²
 -0.07 Wm⁻² for year 2006 - 1850
 -1.89 Wm⁻²
 -0.04 Wm⁻² for year 2006 - 1750
 -2.20 Wm⁻²
- IndRF most sensitive to natural OM levels:
 1.90 → 1.20 Wm⁻² with the increased OM emission/production
- and basic emission years / inventories:
 -0.91 Wm⁻² for year 2000 1850 (CMIP5)
 -1.23 Wm⁻² for year 2000 1750
 -1.20 Wm⁻² for year 2006 1850
 -1.53 Wm⁻² for year 2006 1750

Model validation:

Aerosol concentrations and optical properties compare reasonably well with observations, giving similar or (mainly) improved validation results compared to earlier model versions (but more over-estimated POM in N-America)

Direct and 1.&2. indirect SW forcing at TOA and near ground surface:

- DRF most sensitive to assumed OM/OC ratio for biomass burning POM: + 0.07 → - 0.07 Wm⁻² when OM/BC is changed from 1.4 → 2.6
- Basic emission years / inventories also important, especially for surface forcing: -0.10 Wm⁻² for year 2000 - 1850 (CMIP5)
 -1.04 Wm⁻²
 -0.07 Wm⁻² for year 2000 - 1750
 -1.36 Wm⁻²
 -0.07 Wm⁻² for year 2006 - 1850
 -1.89 Wm⁻²
 -0.04 Wm⁻² for year 2006 - 1750
 -2.20 Wm⁻²
- IndRF most sensitive to natural OM levels:
 1.90 → 1.20 Wm⁻² with the increased OM emission/production
- and to basic emission years / inventories:
 -0.91 Wm⁻² for year 2000 1850 (CMIP5)
 -1.23 Wm⁻² for year 2000 1750
 -1.20 Wm⁻² for year 2006 1850
 -1.53 Wm⁻² for year 2006 1750

Norwegian Meteorological Institute met.no

- DRF most sensitive to assumed OM/OC ratio for biomass burning POM: + 0.07 \rightarrow 0.07 Wm⁻² when OM/BC is changed from 1.4 \rightarrow 2.6
- o
 Basic emission years / inventories also important, especially for surface forcing:

 -0.10 Wm⁻² for year 2000 1850 (CMIP5)
 -1.04 Wm⁻²

 -0.07 Wm⁻² for year 2000 1750
 -1.36 Wm⁻²

 -0.07 Wm⁻² for year 2006 1850
 -1.89 Wm⁻²

 -0.04 Wm⁻² for year 2006 1750
 -2.20 Wm⁻²
- o IndRF most sensitive to natural OM levels: - 1.90 → - 1.20 Wm⁻² with the increased OM emission/production
- and to basic emission years / inventories:
 -0.91 Wm⁻² for year 2000 1850 (CMIP5)
 -1.23 Wm⁻² for year 2000 1750
 -1.20 Wm⁻² for year 2006 1850
 -1.53 Wm⁻² for year 2006 1750

Acknowledgments:

The development of NorESM has been possible because of the granted early access by NCAR to the later public versions of the CCSM4 and CESM1. We are particularly grateful to P. J. Rasch, A. Gettelman, J. F. Lamarque, S. Ghan, M. Vertenstein, B. Eaton, M. Flanner, and others, for invaluable advice on numerous scientific and technical issues, and the support by the CESM program directors during the development period, P. Gent and J. Hurrel.

Ð

AeroCom

 \leftrightarrow

IPCC (CMIP5)

IndRF (W/m2)

IPCC 2000 (CMIP5)

Ctrl - IPCC 2000

Ctrl (AeroCom 2006)

Ctrl

natOM - Ctrl

natOM (less natural OM)

http://aerocom.met.no/

Norwegian Meteorological Institute met.no

		AOD	ABS	DRF at	DRF at	CDNC	r _{eff}	LWP	IndRF
Experiment		(550nm)	(550nm)	TOA	Surface	(870hPa)	(870hPa)		at TOA
				(W m ⁻²)	(W m ⁻²)	(cm ⁻³)	(µm)	(g m ⁻²)	(W m ⁻²)
Ctrl	PD 2006	0.154	0.00632	•		52.4	9.41	130.5	
	PI 1850	0.101	0.00264			36.0	9.77	126.6	
	PD – PI	0.0535	0.00369	-0.0724	-1.89	16.4	-0.359	3.93	-1.20
natOM	PD 2006	0.143	0.00615			46.0	9.96	124.9	
	PI 1850	0.090	0.00245			28.3	10.48	119.0	
	PD – PI	0.0529	0.00370	-0.0673	-1.89	17.7	-0.528	5.94	-1.90
	PD 2006	0.148	0.00623			48.5	9.85	126.1	
natOMocn	PI 1850	0.094	0.00254			31.4	10.33	120.8	
	PD – PI	0.0532	0.00369	-0.0706	-1.89	17.0	-0.479	5.25	-1.66
	PD 2006	0.142	0.00608			47.8	9.50	129.5	
bbPOM	PI 1850	0.096	0.00254			32.0	9.87	125.6	
	PD – PI	0.0461	0.00354	+0.0722	-1.68	15.7	-0.370	3.96	-1.20
Co. al	PD 2006	0.159	0.00632			52.1	9.43	130.5	
strutners	PI 1850	0.106	0.00264			35.7	9.79	126.5	
11	PD – PI	0.0535	0.00369	-0.0694	-1.88	16.4	-0.362	3.94	-1.21
dustscavin	PD 2006	0.143	0.00597			52.5	9.41	130.6	
	PI 1850	0.089	0.00235			35.7	9.78	126.5	
	PD – PI	0.0536	0.00362	-0.103	-1.89	16.8	-0.372	4.06	-1.23
	PD 2006	0.147	0.00603			51.1	8.92	100.0	
cldtunorig	PI 1850	0.096	0.00255			35.2	9.25	97.9	
	PD – PI	0.0500	0.00351	-0.0855	-1.81	15.9	-0.330	3.09	-1.28
gravdep2d	PD 2006	0.168	0.00683	•		52.0	9.44	130.2	
	PI 1850	0.113	0.00298			35.6	9.80	126.3	
	PD – PI	0.0544	0.00385	-0.0263	-1.93	16.4	-0.364	3.96	-1.21
convmix	PD 2006	0.132	0.00518			53.4	9.40	129.1	
	PI 1850	0.089	0.00229			37.0	9.74	125.4	
	PD – PI	0.0429	0.00289	-0.0972	-1.48	16.5	-0.340	3.67	-1.15

		AOD	ABS	DRF at	DRF at	CDNC	r _{eff}	LWP	IndRF
Experiment		(550nm)	(550nm)	TOA	Surface	(870hPa)	(870hPa)		at TOA
				(W m ⁻²)	(W m ⁻²)	(cm ⁻³)	(µm)	(g m ⁻²)	(W m ⁻²)
	PD 2006	0.153	0.00585	•		52.4	9.41	130.4	
noBCac	PI 1850	0.101	0.00257			36.0	9.77	126.6	
	PD – PI	0.0529	0.00329	-0.164	-1.78	16.4	-0.358	3.91	-1.20
replH2O2	PD 2006	0.154	0.00632			52.3	9.41	130.4	
	PI 1850	0.100	0.00264			35.9	9.77	126.6	
	PD – PI	0.0534	0.00368	-0.0703	-1.88	16.4	-0.356	3.87	-1.19
	PD 2006	0.154	0.00632			48.4	9.44	130.1	
no coating	PI 1850	0.101	0.00264			31.2	9.87	125.5	
	PD – PI	0.0535	0.00369	-0.0724	-1.89	17.3	-0.426	4.52	-1.31
	PD 2006	0.154	0.00632			52.4	9.14	130.5	
prescrß	PI 1850	0.101	0.00264			36.0	9.57	126.6	
	PD – PI	0.0535	0.00369	-0.0724	-1.89	16.4	-0.425	3.93	-1.34
F	PD 2000	0.135	0.00460			48.3	9.47	129.7	
Em- PD2000	PI 1850	0.101	0.00264			36.0	9.77	126.6	
	PD – PI	0.0346	0.00197	-0.0997	-1.04	12.3	-0.296	3.10	-0.908
F	PD 2006	0.154	0.00632	•		52.4	9.41	130.5	
Lm-	PI 1750	0.095	0.00193			32.1	9.90	125.3	
F11750	PD – PI	0.0589	0.00438	-0.0416	-2.20	20.3	-0.488	5.20	-1.53
Em	PD 2000	0.135	0.00460			48.3	9.47	129.7	
PD2000 &	PI 1750	0.095	0.00193			32.1	9.90	125.3	
EmP11750	PD – PI	0.0399	0.00267	-0.0689	-1.36	16.1	-0.425	4.37	-1.23
Online	PD 2006	0.151	0.00725			49.0	9.50	130.3	
	PI 1850	0.092	0.00247			34.6	9.86	124.4	
	PD – PI	0.0588	0.00478			13.4	-0.342	5.89	