Marine Organic Aerosols in CAM5/MAM7

Nicholas Meskhidze North Carolina State University

nmeskhidze@ncsu.edu

http://www4.ncsu.edu/~nmeskhi/Homepage.html

B. Gantt, P. Kiliyanpilakkil, A. Sabolis, J. Xu, K. Dawson, Y. Zhang, M. Petters, R. Reed, D. Kamykowski (NCSU); S. Ghan, X. Liu, R. Easter, R. Zaveri (PNNL); C. Facchini (ISAC - NRC); J. Sciare (Gif-sur-Yvette, France); J. Ovadnevaite, D. Ceburnis, C. D. O'Dowd (Galway, Ireland), D. Josset (SSA)

CESM Chemistry Climate Working Group Meeting 11 – 13 February 2013

Motivation

- Improved representation of sea spray aerosol in climate and air quality modes
- Emission, photochemical aging, and removal
- Aerosol optics, aerosolcloud interaction, chemistry of the marine boundary layer
- Influences the Earth's radiative budget directly and indirectly

Objectives/deliverables

- Emissions of primary marine organic aerosols
- Emissions of phytoplanktonproduced isoprene and monoterpenes
- Easily upgradable/interchangeable
- Air quality (EPA CMAQ), mesoscale (WRF-Chem), CTM (GEOS-Chem), GCM (CAM5)

Interaction of the Major Types of Oceanic Emissions with the Lower Atmosphere

[Carpenter et al., Chem Soc Rev, 2012]

A Direct Evidence of Marine Organic Aerosols

A Direct Evidence of Marine Organic Aerosols

[Yoon et al., JGR, 2007]

Ocean-Atmosphere Interactions

[Hoose et al., GRL, 2009]

Light And Species Dependent Production Rates Of Marine VOCs

Laboratory grown phytoplankton monocultures: diatoms *Thalassiosira weissflogii* (*T. weiss.*) (CCMP 1336) and *Thalassiosira pseudonana* (*T. pseud.*) (CCMP 1335), prymnesiophyte strains- *Pleurochrysis carterae* (*P. carter.*) (CCMP 645); dinoflagellate strains- *Karenia brevis* (*K. brevis*) (CCMP 718, CCMP 2229) and *Prorocentrum minimum* (*P. minim.*) (CCMP 1329); cryptophyte strains- *Rhodomonas salina* (*R. salina*) (UTEX 2423)

Experimental Setup

Secondary Organics of Marine Origin

120°₩

180

euo M

120°E

180°₩

60°E

[Maps are created after Alvain et al., GGC, 2008]

- H_{max} dynamic euphotic depth F_{iso} emission fraction
 - isoprene production rate

Primary Organics of Marine Origin

[Russell et al., PNAS, 2010]

Improved Representation of Primary Organic Emissions

Implementation Of Marine Organics In CAM5

Model Configurations

- Horizontal Resolution: 1.9° x 2.5°; Vertical: 30 layers
- Aerosol: 5 sub- and 2 super-micron modes
- Simulation: 5 years; Spin up period: 3 months
- Mårtensson et al. [2003] for 0.02 < Dp < 2.5 µm
- Gong [2003] for 2.5 < Dp < 20 µm
- SOA from isoprene, monotrpenes & MSA (CH_3SO_3H)

Marine Organic Aerosols in CAM5								
		< Sub-micron				> ← Super-micron →		
8	Mode	Accumulation	Atiken	Primary Carbon	Sea salt	Fine Soil Dust	Coarse Sea salt	Coarse Soil Dust
	Aerosol component	Sulfate, Ammonium, POM, SOA, BC, Sea salt, Marine POM & SOA	Sulfate, Ammonium, SOA, Sea salt, Marine POM & SOA	POM, BC	Sea salt, Sulfate, Ammonium, Marine POM	Dust, Sulfate, Ammonium	Sea salt, Sulfate, Ammonium, Marine POM	Dust, sulfate, Ammonium

Surface Concentration of Marine OA (ng m⁻³)

[[]Meskhidze et al., ACP, 2011]

Ocean Derived Organic Aerosols: Effect on CCN

Percentage change in CCN (# cm⁻³)

- Organic sea spray added to the model as additional mass
 (internally-mixed) and as additional mass and number
 (externally-mixed)
- Reduction in hygroscopicity parameter (κ) is compensated by increased number of aerosols
- Laboratory measurements vs. ambient data

[Meskhidze et al., ACP, 2011]

Ocean Derived Organic Aerosols: Climate Impact

Percentage change in Liquid water path

Aerosol indirect forcing (W m⁻²)

Difference: 0.1 W m⁻² (7%)

[Gantt et al., ACP, 2012a]

- Organics contribute 0.5 μg m⁻³ on average but > 3.5 μg m⁻³ during episodic events to sea spray aerosol
- Assuming an external mixture of organics and sea-salt, cloud condensation nuclei and cloud droplet number concentration increase by up to 20%
- A change in the model-predicted aerosol indirect forcing of ~0.1 W m⁻² (7%) is possible by including organic sea spray aerosol
- A top-down marine POA emission scheme that best simulates the monthly to hourly concentrations has an global submicron emission rate of 6.3 Tg yr⁻¹

My Take on Near Future Research on Marine Organics

- It is very complex and convoluted with lots of uncertainties
- Extensive lab measurements for phytoplankton emitted BVOC and POA due to bubble bursting are needed
- More field campaigns in clean marine environments (coastal vs. open ocean)
- Improvements to model representation of sources and sinks of marine organics
- > Improved satellite retrievals of marine aerosols

Thank you! Questions?

Annual Average Marine POA Emissions (GEOS-Chem)

Model Evaluation of Concentrations

[Gantt et al., ACP, 2012b]