Results from coupling the CAM-Oslo aerosol and MOZART chemistry schemes

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Iversen

University of Oslo and Norwegian meteorological institute

February, 2013

- Introduction on NorESM
- CAM-Oslo: its aerosols and secondary aerosol formation
- Coupling wit Mozart
- Results
- Conclusions

3

Introduction on NorESM

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

< E ► < E

The NorESM model

Based on CCSM-4, CESM-1: modifications

• Atmosphere: based on CAM-4 but with different aerosol description

Ocean: MICOM (instead of POP)

Description

- T. Iversen: About NorESM, a model based on CCSM4 but with significant amendments (AMWG)
- A. Kirkevåg: Natural aerosols (CCWG)

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

The NorESM model

Participated in CMIP5

Description

- Zhang et al. [2012, GMD]: Pre-industrial and mid-Pliocene simulations with NorESM-L
- Zhang and Yan [2012, GMD]: Pre-industrial and mid-Pliocene simulations with NorESM-L: AGCM simulations
- Kirkevåg et al. [2013, GMD]: Aerosol-climate interactions in the Norwegian Earth System Model NorESM
- Bentsen et al. [2012, GMDD]: The Norwegian Earth System Model, NorESM1-M Part 1: Description and basic evaluation
- Iversen et al. [2012, GMDD]: The Norwegian Earth System Model, NorESM1-M Part 2: Climate response and scenario projections
- Tjiputra et al. [2012, GMDD]: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM)

CAM-Oslo: its aerosols and secondary aerosol formation

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

Image: Image:

Aerosols in CAM-Oslo

13 log-normal modes with fixed dry radius

		radius [μ m]			
1 2 3 4	SO ₄ (n) BC(n) BC/OC(ni) BC(ax)	0.0118 0.0118 0.04 0.1			
5 6 7 8	SO ₄ (na) BC(a) BC/OC(ai) SO ₄ (pr)	0.04 0.04 0.04 0.075	SO4(a1) SO4 SO4 SO4 SO4 SO4		
9 10 11 12 13	DU DU SS SS SS	0.22 0.63 0.022 0.13 0.74	SO4(ac) SO ₄ SO ₄ SO ₄ SO ₄ SO ₄ SO ₄	BC(ac) BC BC BC BC BC BC	OC(ac) OC OC OC OC OC
	$SO_4(aq)$				

Remark

Number concentrations is a diagnostic based on mass

3

Sulfate aerosol formation

Reactions:

DMS	+	NO_3	\rightarrow	SO ₂			
DMS	+	OH	\rightarrow	0.5 SO ₂	+	0.5 MSA (-	\rightarrow POM)
DMS	+	OH	\rightarrow	SO ₂			
SO ₂	+	OH	\rightarrow	H_2SO_4			
SO_2	+	O ₃	\rightarrow	SO ₄	(aqu	ieous phase)	
SO_2	+	H_2O_2	\rightarrow	SO ₄	(aqu	ieous phase)	

Oxidants in CAM-Oslo:

- OH Year 2000 climatology + daily cycle (no cloudiness impact)
- O₃ Year 2000 climatology
- H₂O₂ Relaxed towards year 2000 climatology (dependance on cloud cover)
- NO₃ Effective reaction rate

(OH, O_3 , and H_2O_2 climatologies come from a CTM simulation)

Gas phase tracers in CAM-Oslo

DMS SO2 (H₂O₂)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Secondary organic aerosol formation

Emissions of hydrocarbons

$C_{10}H_{16}$	Monoterpenes (as α -pinine)
$C_6H_5(CH_3)$	Aromatics (as toluene)
C ₅ H ₁₂	Alkanes (# $C > 3$)
C₅H ₈	Isoprene

Reactions with oxidants

$C_{10}H_{16}$	+	O3	\rightarrow	less volatile species
$C_{10}H_{16}$	+	OH	\rightarrow	
$C_{10}H_{16}$	+	NO_3	\rightarrow	
$C_6H_5(CH_3)$	+	OH	\rightarrow	
C ₅ H ₁₂	+	OH	\rightarrow	
C ₅ H ₈	+	OH	\rightarrow	

Secondary organic aerosol formation in CAM-Oslo

- SOA emitted as POA (climatology, coming from a CTM simulation)
- Emissions are limited to the surface, and assumed to be redistributed by turbulence and convection

Coupling with Mozart

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

→ < E → < E</p>

MOZART-4

Chemistry

- tropospheric chemistry
- 80 gas phase species
- 16 aerosol tracers

Aerosol modes

SO4 BC1 E OC1 C DU1 E SS1 S NH4 (1	8C2 0C2 0U2 S2 NH4)NO3	SOA DU3 SS3	DU4 SS4
---	------------------------------------	-------------------	------------

Remarks

• Aging of hydrophobic OC1 and BC1 to hydrophylic BC2 and OC2

くぼう くほう くほう

3

Keep CAM-Oslo aerosol

Secondary aerosol formation

- Use the Mozart H₂SO₄ and SO₄ formation rates
- Use the Mozart SOA formation rate

NH₄ and (NH4)NO₃ in Mozart: remain

Heterogeneous chemistry in Mozart: use CAM-Oslo aerosols

< 三→ < 三→

Results

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

イロン イヨン イヨン イヨン

æ

Simulations

Model

- 2.5 × 1.9, 26 levels
- Prescribed observed sea-surface temperature and sea-ice extend
- Period: 2006-2009
- Biomass burning: GFED.v3.1 emissions
- Anthropogenic: RCP6.0 emission scenario

Simplified setup - offline

- Cloud condensation nuclei concentration: prescribed
- Aerosol fields, O₃: monthly mean climatologies

Three setups

- Standard Mozart
- Standard CAM-Oslo
- CAM-Oslo/Mozart : coupled

Allows direct and indirect aerosol effect calculation

- Emissions: 2006-2009
- Emissions: no anthropogenic emissions

A B M A B M

Oxidant fields in sulphur cycle

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

→ 3 → < 3</p>

SO₄ (pptm)

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

P.

→ Ξ → < Ξ</p>

Conversion rates (Tg[S]/yr):

	$DMS\toMSA$	$\text{DMS} \rightarrow \text{SO}_2$	$\text{SO}_2 \rightarrow \text{H}_2\text{SO}_4$	$\text{SO}_2 \rightarrow \text{SO}_4$
Mozart	3.64		8.93	42.98
CAM-Oslo	4.87	13.23	8.14	45.76
CAM-Oslo/Mozart	3.64		8.59	42.40

Burden (Tg) :

	DMS	SO_2	SO ₄	POM
Mozart	0.16	0.43	1.83	
CAM-Oslo	0.25	0.52	1.80	2.38
CAM-Oslo cpl. with Mozart	0.16	0.44	1.93	2.05

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART chem

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

3

Comparison with observations SO_2

Comparison with observations SO4

Secondary aerosol formation

Standard emission CAM-Oslo: $37.1 \, \text{Tg} \, \text{yr}^{-1}$

SOA formation rate in Mozart Standard

D. Olivié, M. Sand, T. Berntsen, Ø. Seland, A. Kirkevåg, and T. Results from coupling the CAM-Oslo aerosol and MOZART cher

P.

→ 3 → 4 3

Heterogeneous chemistry

Surface area density

Use CAM-Oslo aerosols

Uptake coefficient γ

Reaction	Aerosol	γ
$N_2O_5 \rightarrow 2HNO_3$	SO ₄ BC OC mineral dust sea salt	f(RH, T) 0.005 f(RH) f(RH) f(RH)
$NO_3 \to HNO_3$	wet aerosols	0.001
$\mathrm{NO_2} \rightarrow 0.5\mathrm{HNO_3} + 0.5\mathrm{HNO_2}$	wet aerosols	0.0001
$HO_2\rightarrow0.5H_2O_2$	wet aerosols	0.2

Further specifications

- Wet aerosols: if RH > 50 %
- Hygroscopic growth is taken into account
- Internally mixed aerosols: which fraction of surface is covered by which aerosol type

O₃ distribution [ppbv]

Ozone - impact on chemistry Comparison with O₃ climatology 1985–2011 [McPeters et al., 2007]

Aerosol effect

Comparison of two simulation

- No anthropogenic emissions
- 2006–2009 emissions

Direct and indirect effect [W m⁻²]

	Direct effect	Indirect effect
CAM-Oslo	-0.043	-0.901
CAM-Oslo/Mozart	-0.058	-0.921

• • = • • = •

- SO₂ differs strongly between CAM-Oslo and CAM-Oslo/Mozart at surface and in upper troposphere
- SO₄ shows more agreement between CAM-Oslo and CAM-Oslo/Mozart
- Mozart SOA production differs strongly from climatology used in CAM-Oslo
- Direct and indirect aerosol effect is slightly stronger in CAM-Oslo/Mozart than in CAM-Oslo
- Possible large impact from description of emissions (surface/altitude) and (dry) deposition parameterizations
- It would be useful to compare with POM observations

向 とう きょう うちょう