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‣ Only framework we have for breaking down climate sensitivity

‣ Natural step to look at how processes in particular locations might affect 
global feedback (e.g. subtropical stratus decks)

‣ But trying to understanding global sensitivity through a local lens raises 
questions:

‣ Nonlinear:  What is the extent to which we can we treat feedbacks as 
independent of each other, i.e. neglecting interactions between them?

‣ Nonlocal:  How do local and remote processes combine to affect the spatial 
pattern of warming (e.g. polar amplification)?
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How do local and remote processes 
combine to affect patterns of warming?

Arctic surface warming (2011 minus 1981-2010)

NOAA ESRL

Arctic sea ice extent (Sept 16, 2012)

[yellow line = 1979-2010 average extent of yearly min; NASA GSFC]
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This approach offers a particularly clean set-up and a detailed feedback analysis
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Spread in CMIP feedbacks
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(Zelinka and Hartmann, 2012)

Uncertainty in warming due to uncertainty in: 
local feedbacks? feedbacks elsewhere? nonlinearities in feedbacks?

A challenge for regional climate predictability

at some location

Ensemble
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‣ CO2 forcing

‣ Feedbacks (temperature, water vapor, clouds, surface albedo)

‣ Changes in divergence horizontal heat flux (“transport”) (nonlocal)

‣ Nonlinear interactions (typically neglected)

‣ Goal to close the energy balance, to calculate the nonlinearity as a 
residual (n.b. clear-sky only)
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Idealized aquaplanet experiment
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‣ Isolate a clear signal, minimize complexities

GFDL AM2
perpetual equinox
no q-flux
no aerosols
no land
20-m mixed layer ocean
infinitesimally thin sea ice
2×CO2 to equilibrium
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GFDL AM2
perpetual equinox
no q-flux
no aerosols
no land
20-m mixed layer ocean
infinitesimally thin sea ice
2×CO2 to equilibrium

‣ Future work will relax simplifying assumptions (e.g. ocean heat uptake, 
aquaplanet intercomparison with Brian Rose, Kyle Armour)
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‣ Isolate a clear signal, minimize complexities

GFDL AM2
perpetual equinox
no q-flux
no aerosols
no land
20-m mixed layer ocean
infinitesimally thin sea ice
2×CO2 to equilibrium

‣ Future work will relax simplifying assumptions (e.g. ocean heat uptake, 
aquaplanet intercomparison with Brian Rose, Kyle Armour)

‣ Explicitly diagnosed radiative kernels (used to calculate feedbacks) and 
radiative forcing for this model set-up
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Spatial variability in radiative forcing

March 4, 2013CESM CVCWG

Introduction                                  Results                                  Summary                                  Latest

75 45 30 15 0 15 30 45 75

0

2

4

6

lat

W
 m

2

a)

75 45 30 15 0 15 30 45 75

0

2

4

6

lat

W
 m

2

b)

Aquaplanet Radiative Forcing

Fixed SST 3.8 ± 0.2 W/m2 (40 year run)
Stratosphere-adjusted 3.4 W/m2

Uniform 3.7 W/m2



7

Spatial variability in radiative forcing

March 4, 2013CESM CVCWG

Introduction                                  Results                                  Summary                                  Latest

‣ Two improved methods: stratosphere-adjusted (e.g. IPCC) and fixed-SST
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‣ Two improved methods: stratosphere-adjusted (e.g. IPCC) and fixed-SST

‣ Fixed-SST forcing preferred: accounts for all changes in forcing that are 
independent of surface temperature change (i.e. consistent with Taylor series)
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‣ Two improved methods: stratosphere-adjusted (e.g. IPCC) and fixed-SST

‣ Fixed-SST forcing preferred: accounts for all changes in forcing that are 
independent of surface temperature change (i.e. consistent with Taylor series)

‣ Recent work demonstrates narrowing of intermodel spread in cloud feedback 

when rapid troposphere adjustments are binned with forcing rather than 
feedback (Andrews and Forster, 2008)
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Asymmetries are absent from the
clear-sky forcing
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‣ Attributed to the shortwave response of clouds directly to CO2 (analogous to 
effect of aerosols on cloudiness)

‣ Rapid cloud adjustment also noted in other studies (Colman and McAveney, 2011; 
Watanabe et al., 2011; Wyant et al., 2012)
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Global mean feedbacks

Nonlinearities compensate total linear feedback.
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Global mean feedbacks

Nonlinearities compensate total linear feedback.

‣ How does forcing translate into 
uncertainty in feedbacks?
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Global mean feedbacks
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Global mean feedbacks

sum of linear 
feedbacks

nonlinear term

Nonlinearities compensate total linear feedback.

IPCC AR4 = my aquaplanet

‣ How does forcing translate into 
uncertainty in feedbacks?

‣ Linear feedbacks compare well with 
other, non-Aquaplanet studies.

‣ Nonlinear term is a large fraction of 
sum of linear feedbacks.
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Global mean feedbacks

sum of linear 
feedbacks

nonlinear term

Nonlinearities compensate total linear feedback.

IPCC AR4 = my aquaplanet

‣ How does forcing translate into 
uncertainty in feedbacks?

‣ Linear feedbacks compare well with 
other, non-Aquaplanet studies.

‣ Nonlinear term is a large fraction of 
sum of linear feedbacks.
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If assumed linearity, would 
calculate sensitivity as ...

rather than actual 4.69 K

∆T s = ∆ �Rf/
�

x

λx = 7.7K
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Cloud feedback

Reduction of tropical upper troposphere clouds, increase in low bright 
clouds at high latitudes
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An aside: normalizing energy flux changes
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Conventional, 
global mean

Local
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Positive subtropical feedback and polar amplification implies critical roles for transport 
and/or nonlinearities (1) to maintain stability and (2) to export heat to high latitudes
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A closer look into transport and nonlinear terms

‣ In a linear world, changes in 
transport would balance feedback 
and forcing. 

‣ In a nonlinear world, incomplete 
divergence of heat away from 
positive feedbacks and into negative 
feedbacks.

Recall this equation ...

75 60 45 30 15 0 15 30 45 60 75

15

10

5

0

5

10

lat

 W
 m

2

 

 

transport combined feedback and forcing nonlinear term

Energy-balance terms

nonlinear

feedback + forcing

transport

tropical cooling 
tendency

high-latitude warming 
tendency

March 4, 2013CESM CVCWG

Introduction                                  Results                                  Summary                                  Latest

Nonlinearity compensates the total linear feedback meridionally
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Relative importance of energy-balance terms to 
pattern of warming
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(n.b. local not global-mean)

Energy balance, rearranged:
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Forcing is much smaller than 
radiative adjustments by local 
processes; previously noted 

asymmetry has no effect
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Breakdown of the transport term

Contribution of transport to warming is explained by the larger increase in 
latent energy flux polewards of 30°, incompletely compensated

anomalous divergence
anomalous convergence

Change in northward heat flux
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Which interactions between feedbacks are 
responsible?

lat

hP
a

 

 

75 45 30 15 0 15 30 45 75

200

400

600

800

0 5 10 15

Change in specific humidity (g/kg)

March 4, 2013CESM CVCWG

Introduction                                  Results                                  Summary                                  Latest

weakening and expansion 
of Hadley Cell

overall moistening

Linear model overestimates TOA fluxes in regions of strong upper-level 
moistening, which would manifest as a nonlinearity

1×CO2 streamlines
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Which interactions between feedbacks are 
responsible?

‣ Feedback framework assumes each vertical level and each variable is 
independent

‣ However vertical masking of clear-sky variables, and interactions between 
variables, could complicate this picture
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An independent test

Interactions amongst and within clear-sky feedbacks captures magnitude and 
qualitative shape of residual nonlinearity

residual nonlinearity

Nonlinearity = GCM 
response minus linear approx.

Change in TOA flux

March 4, 2013CESM CVCWG

Introduction                                  Results                                  Summary                                  Latest

‣ Actual changes at all levels in humidity, temperature, surface albedo; run 
simultaneously through offline radiation code

‣ Compare to linear sum of individual variables at each level (as feedback 
framework presumes)



‣ High climate sensitivity (4.69 K) is consistent with subtropical regions of 
positive water vapor and cloud feedbacks. However warming in subtropics is 
small!

‣ Nonlocal:  Two regions force anomalous divergence of heat flux: subtropics 
and ice line.

‣ Nonlinear:  Interactions between and within clear-sky feedbacks reinforce 
pattern of tropical cooling and high-latitude warming tendencies; also 
reduces global climate sensitivity from very high to merely high.

‣ Resulting pattern of warming bears the signature of all of the above, but 
importantly, is not limited to the latitude where a particular physical process 
is active. 
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Summary

pdfs at http://nicolefeldl.com
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New research underway
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Insights into understanding high-sensitivity aquaplanet 
(and perhaps high-sensitivity paleoclimates)?

Climate 
response

Feedback strength (-λ/λP)

‣ Very small changes in feedbacks can result in quite different climate responses

(Roe 2009)
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Positive shortwave cloud feedback 
explains high sensitivity
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Currently building a Walker Circulation into the aquaplanet, to test the sensitivity of 
global sensitivity to tropical circulation

GFDL CM2.1 ( 0.20 W m 2 K 1) GFDL AM2.1 aquaplanet (0.70 W m 2 K 1)
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Though extratropics 
are similar
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Currently building a Walker Circulation into the aquaplanet, to test the sensitivity of 
global sensitivity to tropical circulation

GFDL CM2.1 ( 0.20 W m 2 K 1) GFDL AM2.1 aquaplanet (0.70 W m 2 K 1)
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‣ Cloud changes tied to circulation changes

‣ Does the absence of a tropical Walker Circulation explain high sensitivity?

‣ Implications for interpreting high-sensitivity paleoclimates without invoking 
biosphere and ice-sheet interactions

Though extratropics 
are similar
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Candidate sources of nonlinearity

✓ Vertical masking of, and interactions between, clear-sky feedbacks. Accounts 
for majority of nonlinearity.

✓ Double counting of the rapid tropospheric adjustment to CO2. Minor 
because residual is nearly identical for stratosphere-adjusted radiative 
forcing, which doesn’t double count.

➡ 2nd-order terms associated with the effect of clouds on non-cloud fields 
(1st-order are accounted for in cloud feedback calculation).

∆R = ∆ �R0
f +∆CRF +

�
�

n

λ0
n

�
∆T s
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Why a clear-sky residual?

∆R = ∆ �Rf +

�
�

n

λn

�
∆T s + λc∆T s

∆R = ∆ �R0
f +∆CRF +

�
�

n

λ0
n

�
∆T s

R = (∆R−∆CRF )−
�
∆ �R0

f +

�
�

n

λ0
n

�
∆T s

�

Substitute in equation for cloud feedback:

Separate non-cloud from cloud feedbacks:

Rearrange terms:

actual, model-produced 
clear-sky fluxes

feedback approximated 
clear-sky fluxes
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Aquaplanet kernels
(offline run, 1 year 8×daily output, 1K perturbation)

Changes in 
cloud-top 

temperature

Changes in 
humidity most 
effective in dry 

upper troposphere

TOA radiative flux response to tropospheric warming and moistening

λx =
∂R

∂x
× ∆x

∆Ts

feedback kernel response
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Change in relative humidity

hP
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Contour interval is 2%; dark colors are a decrease.
Contour lines show streamlines for control climate.


