Atmospheric radiative controls on global precipitation

Angeline G. Pendergrass and Dennis L. Hartmann

Contact: *apgrass@uw.edu*

Outline

- Background on precipitation in the atmospheric energy budget
- Part 1: Atmospheric radiative cooling response to CO₂ increase

 Part 2: Black carbon forcing and global-mean precipitation inter-model spread in A1b scenario of AR4

Precipitation increases more slowly than water vapor with global warming: Why?

Plot from Held and Soden (2006)

$$LW_{atm} - SW_{atm} - SH = LH$$
$$\Delta P \approx \Delta R_{atm} = \Delta LW_{atm} - \Delta SW_{atm}$$

The dominant factor controlling the global-mean precipitation increase with surface temperature increase is the clear-sky atmospheric radiation.

CMIP5 multi-model mean change

Transient CO₂ increase (1pctCO2)

ΔΡ/ΔΤ	1.1
Clear-sky ΔR _{atm} /ΔT	1.2
Total $\Delta R_{atm} / \Delta T$	0.8
Clouds	-0.4
ΔSΗ/ΔΤ	0.3 Wm ⁻² K ⁻¹

Sign: positive corresponds to increased precipitation

Approach

- Column radiation model (Fu and Liou 1992)
 CMIP5 multi-model annual mean T, q profiles
- Make simple changes
 - Warm by 1 K
 - Moisten at constant RH
 - Vertically amplify warming
 - Increase CO₂
- Calculate clear-sky atmospheric radiative cooling response at each gridpoint – then take global mean

Goal

• Take what we know about the TOA radiative response (from climate feedbacks)

• Incorporate surface response to make it relevant to precipitation change

Warm the atmosphere and surface by 1 K ΔT_a TOA $\Delta R_{\uparrow} = 2.0$

Atmosphere $\Delta R = 5.1$

Surface ΔR_{\downarrow} = 3.0

 $ATM = TOA_{\uparrow} + SFC_{\downarrow}$

Т

Specific humidity

Specific humidity

Constant-RH moisten LW Response

TOA ΔR_{\uparrow} = -1.6 Wm⁻² Decreased LW cooling to TOA

Atmosphere ∆R: 1.5 Wm⁻² Increased atmospheric LW cooling

Surface ΔR_{\downarrow} : 3.0 Wm⁻² Increased LW cooling to surface

Constant-RH moisten SW Response TOA ΔR_{\uparrow} = -0.1 Wm⁻²

Atmosphere ΔR : -0.9 Wm⁻²

Surface ΔR_{\downarrow} : -0.8 $Wm^{\text{-}2}$

Constant-RH moisten LW+SW Response

TOA ΔR_{\uparrow} = -1.7 Wm⁻²

Atmosphere $\Delta R: 0.6 \text{ Wm}^{-2}$

Surface ΔR_{\downarrow} : 2.2 Wm⁻²

Lapse rate change

LW emissivity

Increased CO2 LW emissivity

Atmosphere ΔR : -1.3 Wm⁻²

Surface ΔR_{\downarrow} : 1.1 Wm⁻²

Total

TOA ΔR_{\uparrow} = -0.7 Wm⁻²

Atmosphere ΔR : **1.0** Wm⁻²

Surface ΔR_{\downarrow} : 1.7 Wm⁻²

Clear-sky atmospheric column calculation $\Delta R_{atm}/\Delta T$ 1.0 Wm⁻²K⁻¹

CMIP5 multi-model mean

ΔΡ/ΔΤ	1.1
Clear-sky ΔR _{atm} /ΔT	1.2
Total $\Delta R_{atm} / \Delta T$	0.8
Clouds	-0.4
ΔSΗ/ΔΤ	0.3 Wm ⁻² K ⁻¹

Positive corresponds to increased precipitation

Part 1: Key points

- Clear-sky atmospheric radiative cooling responses calculated with a column radiation model correctly predicts the global-mean precipitation change in CMIP5 models.
- The change in the surface flux, especially due to moistening, is critically important in determining the precipitation response to warming.
- You can infer precipitation responses of the wrong sign by considering only the top-of-atmosphere radiation.

GLOBAL-MEAN PRECIPITATION AND BLACK CARBON IN AR4 SIMULATIONS

Pendergrass, A.G. and D.L. Hartmann (2012). GRL.

A1b forcing scenario: greenhouse gases and aerosols

Rank	IPCC model	$\Delta P / \Delta T ~({\rm W~m^{-2}}$	K^{-1})
1	NCAR.CCSM3.0	2.1	,
2	MRI.CGCM2.3.2A	1.8	
3	IPSL.CM4	1.8	
4	MPI.ECHAM5	1.8	NCAR has almost 1
5	CCCMA.CGCM3.1	1.6	
6	CCCMA.CGCM3.1.T63	1.6	times the
7	CNRM.CM3	1.6	procipitation change
8	INMCM3.0	1.4	precipitation change
9	MIROC3.2.HIRES	1.4	of GFDL CM2.1!
10	MIROC3.2.MEDRES	1.4	Λ/h
11	UKMO.HADGEM1	1.1	vvny :
12	MIUB.ECHO.G	0.98	
13	UKMO.HADCM3	0.88	
14	GFDL.CM2.0	0.73	
15	GFDL.CM2.1	0.57	

LW/SW clear-sky/cloudy-sky changes and precipitation

Shortwave absorption and precipitation without aerosol changes

Table 10.1. Radiative forcing agents in the multi-model global climate projections. See Table 8.1 for descriptions of the models. Entries mean Y: forcing agent is included; C: forcing agent varies with time during the 20th Century Climate in Coupled Models (20C3M) simulations and is set to constant or annually cyclic distribution for scenario integrations; E: forcing agent represented using equivalent CO₂; and n.a.: forcing agent is not specified in either the 20th-century or scenario integrations. Numeric codes indicate that the forcing agent is included using data described at 1: http://www.cnm.meteo.fr/ensembles/public/results/results.html; 2: Boucher and Pham (2002); 3: Yukimoto et al. (2006); 4: Meehl, et al., 2006b; 5: http://aom.giss.nasa.gov/W/GHGA18.LP; and 6: http://sres.ciesin.org/final_data.html.

IPCC AR4 WG1 Meehl et al (2007)

Model	Forcing Agents																	
	Greenhouse Gases							Aerosols								Other		
	C.0•	СНи	N ₂ O	Stratospheric Ozope	Tropospheric Ozope	CECs	s0.	Urban	Black carbon	Organic carbon	Nitrate	1st Indirect	2nd Indirect	Dust	Voleanie	Sea Salt	Land Lise	Solar
BCC-CM1	Y	Y	Y	Y	C	4	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	С	n.a.	С	С
BCCB-BCM2.0	1	1	1	C	C	1	2	C	DЭ	D 3	DЭ	DЭ	D 3	С	0.3	С	C	C
CCSMB	4	4	4	4	4	4	4		4	4	n a	n.a.	n.a.	v	с.	v		c
C G C MR 1(747)		v	v	r C	r C	v	2		, ,		n.a.	n.a.	n.a.	, c	° c	, c		r r
	.'	v	v	č	č	v					n.a.				Č	č		č
CGCM3.1(103)		T	T	U 	ι 	T		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		L	с -	1	U.
CNRM-CM3	1	1	1	Y	Ŷ	1	2	С	n.a.	n.a.	n.a.	n.a.	n.a.	С	n.a.	С	n.a.	n.a.
CSIRO-MK3.0	Y	Е	Е	Y	Y	E	Y	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ECHAM5/MPI-OM	1	1	1	Y	С	1	2	n.a.	n.a.	n.a.	n.a.	γ	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ECH0-G	1	1	1	С	Υ	1	6	n.a.	n.a.	n.a.	n.a.	Υ	n.a.	n.a.	С	n.a.	n.a.	С
FGOALS-g1.0	4	4	4	С	С	4	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	С
GFDL-CM2.0	Y	γ	Y	Y	γ	γ	Y	n.a.	Ŷ	Y	n.a.	n.a.	n.a.	С	С	С	с	С
GFDL-CM2.1	Y	γ	Y	Y	Y	γ	Y	n.a.	Ŷ	Y	n.a.	n.a.	n.a.	С	С	С	с	С
GISS-AOM	5	5	5	С	С	5	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Υ	n.a.	n.a.
GISS-EH	Y	Υ	Y	Y	γ	γ	Y	n.a.	γ	Y	Υ	n.a.	γ	С	Υ	С	Y	Υ
GISS-ER	Y	γ	Y	Y	γ	γ	Y	n.a.	Ŷ	Y	γ	n.a.	Y	С	Y	С	Y	γ
INM-CM3.0	4	4	4	С	С	n.a.	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	с	n.a.	n.a.	С
IPSL-CM4	1	1	1	n.a.	n.a.	1	2	n.a.	n.a.	n.a.	n.a.	γ	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
MIROC3.2(H)	Y	γ	Y	Y	γ	Y	Y	n.a.	Ŷ	Y	n.a.	γ	Υ	Y	С	Υ	с	С
MIROC3.2(M)	Y	γ	Y	Y	γ	γ	Y	n.a.	Ŷ	Y	n.a.	γ	Υ	γ	С	Υ	с	С
MRI-CGCM2.3.2	3	3	3	С	С	3	3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	С	n.a.	n.a.	С
PCM	Y	γ	Y	Y	γ	Y	Y	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	С	n.a.	n.a.	С
UKMO-HadCM3	Y	γ	Y	Y	γ	γ	Y	n.a.	n.a.	n.a.	n.a.	γ	n.a.	n.a.	С	n.a.	n.a.	С
UKMO-HadGEM1	Y	γ	Y	Y	γ	Y	Y	n.a.	γ	Y	n.a.	γ	γ	n.a.	С	Y	Y	С

AR4 models, black carbon forcing, and 21st Century precipitation change

 $^{1})$

Rank	IPCC model	$\Delta P / \Delta T$ (W m ⁻² K ⁻
1	NCAR.CCSM3.0	2.1
2	MRI.CGCM2.3.2A	1.8
3	IPSL.CM4	1.8
4	MPI.ECHAM5	1.8
5	CCCMA.CGCM3.1	1.6
6	CCCMA.CGCM3.1.T63	1.6
7	CNRM.CM3	1.6
8	INMCM3.0	1.4
9	MIROC3.2.HIRES	1.4
10	MIROC3.2.MEDRES	1.4
11	UKMO.HADGEM1	1.1
12	MIUB.ECHO.G	0.98
13	UKMO.HADCM3	0.88
14	GFDL.CM2.0	0.73
15	GFDL.CM2.1	0.57

Bolded models incorporate black carbon forcing (IPCC Table 10.1).

Clear-sky shortwave atmospheric absorption change

NCAR CCSM 3.0

GFDL CM 2.0

Change in clear-sky shortwave absorption

Part due to absorption by water vapor (using feedback kernels from Previdi [2010])

Difference of above

Precipitation and black carbon forcing timeseries

Clear-sky SW absorption and precipitation respond to variations in black carbon forcing.

Conclusions: Part 2

• Different black carbon forcing prescriptions in A1b simulations in AR4 impact the atmospheric energy budget and affect global-mean precipitation.

 Clear-sky SW atmospheric absorption forcing varies by 1.9 Wm⁻²K⁻¹ across IPCC AR4 A1b models, which in turn affects global mean precipitation by 1.5 Wm⁻²K⁻¹, or 1.9 cm y⁻¹K⁻¹.

• Better characterization of aerosol radiative properties is required for intercomparison studies of model precipitation changes.

Take home messages

- Global-mean precipitation in model experiments is balanced by changes in clearsky atmospheric radiative cooling
- Moistening decreases OLR but increases LW emission to the surface
- Black carbon is an efficient forcing agent on precipitation

Contact: *apgrass@uw.edu* Acknowledgements

- Funding provided by NSF grant AGS-0960497.
- CMIP5 modeling groups provided a wealth of data, managed by PCMDI at LLNL.
- Bryce Harrop provided calculations of the insolation-weighted annual mean solar zenith angle.
- Michael Previdi provided radiative feedback kernels.

Extra slides

LW water vapor

Atmospheric cooling increase due to the CMIP5 specific humidity change at each lon, pressure [Wm⁻²K⁻¹(100 hPa)⁻¹]

Upwelling radiative flux due to idealized clouds

Previous work: Lambert and Webb (2008)

- Examined a perturbed physics GCM ensemble
- Found clearsky radiation of fundamental importance

Previous work: Stephens and Ellis (2008)

 Framed the precipitation and atmospheric energy budget changes in terms of water vapor

$$-efficiency = \frac{precipitation \ change}{water \ vapor \ change} \sim R_a$$

Used an empirical formula for atmospheric radiation based on column water vapor

$$-R_{net_{o}clr} \approx c_{o} + aW^{b}$$

Previous work: Previdi (2010)

 Used feedback kernel diagnosis of change for AR4, A1b scenario (including aerosol change)

Previdi (2010), Figure 5

Precipitation as energy flux

