Vertical Coupling in Climate

Thomas Reichler (U. of Utah)

Observations

- Reichler et al. (2012)
- SSWs seem to cluster
- Low-frequency power

- Similar structure in NAM, NAO, and AMOC
- Cause and effect?

Review of Studies With Stratosphere-Resolving Models

Hamilton (1995)

Femperature (K)

- GFDL SKYHI
- Climatological SSTs and sea ice
- Decadal variability in winter polar vortex

FIG. 9. The December-February mean North Pole temperature in each of 29 consecutive years from the SKYHI control run. Results for 10 mb, 30 mb, 50 mb, and 100 mb.

Erlebach et al. (1996)

- Berlin TSM GCM
- SSWs tend to cluster: most SSWs occur centered on two years

Butchart et al. (2000)

- UKMO "Unified Model"
- Internally produced decadal variability
- Associated with changes in SSW frequency
- Consistent with variations in EP flux convergence

Schimanke et al. (2011)

- Coupled ECHAM4; constant forcing
- Multi-decadal variability in the number of SSWs
- Connected to variations upward EP flux at 100 hPa

Manzini et al. (2012)

- Coupled ECHAM5; constant forcings
- Low-pass filtered
- 2 periods
 - A: strong vortex (0.6 SSWs/yr)
 - B: weak vortex (1.2 SSWs/yr)
 - AMOC follows along

SSWs in CM2.1 and CMIP5

Vortex Composites Atmospheric Response

NAM10_{daily} > 2.5, 0-60 days following events

Reanalysis & CM2.1

contours: sea level pressure anomalies vectors: wind stress anomalies shading: sensible and latent heat flux anomalies

- CM2.1 surface response is too weak
- NAO nodal point coincides with main downwelling region

Reanalysis & CM2.1

Reanalysis & CM2.1

- Surface response to SSWs too weak in CM2.1
- Lack of a good stratosphere?

CMIP5

NAM10_{daily} > 2.5 or <-3

High-top models show more realistic surface response

Vortex Composites Ocean Response

Composites on persistent stratospheric events (low-pass filtered NAM10)

CM2.1

- 50 positive, 46 negative
- every ~42 years

AMOC monthly data

12,944 years

CCSM4 (500 yrs)

Additional Analysis

- Analysis so far was based on composites on NAM10
- Stratosphere seems to lead AMOC
- What about the troposphere?
 - lagged AMOC regressions
 - spectral coherence analysis
- CM2.1, monthly raw data, no filtering

AMOC

AMOC

AMO

- NAM10 leads NAO by ~2 and AMOC by ~5 years
- Only weak feedback from ocean into atmosphere

Spectral Coherence

Mann and Park (1993) CM2.1

• Similar outcomes in CMIP5:

Drivers of Stratospheric Variability

1. Stochastic forcing

- stratosphere is dynamically stable, troposphere is source of variability
- unable to explain clustering of SSWs

2. External influences

- 11-year solar cycle (Ineson et al. 2011), volcanoes (Ottera et al. 2010)
- unable to explain constant forcing experiments

Drivers of Stratospheric Variability

- 3. Internal effects requires memory
 - lower boundaries
 - ocean, snow and ice: Ineson and Scaife (2009), Taguchi and Hartmann (2006), Schimanke et al. (2011), Cohen et al. (2007), Ogi et al. (2003)
 - requires feedback into stratosphere, which seems very weak
 - unable to explain atmosphere-only experiments
 - lower stratosphere
 - long radiative damping time scale (30 days) (Baldwin et al. 2003)
 - tropical lower stratosphere (Hamilton 1995)
 - long radiative damping time scale, small Coriolis parameter, strong static stability insulates flow from troposphere
 - missing QBO in models may increase memory
 - ozone memory in lowermost stratosphere (Kuroda and Yamazaki 2010)
 - decadal variations in QBO phase transitions (Anstey and Shepherd 2008)
 - positive dynamical feedbacks, involving chemistry (Hartmann et al. 2001)

Summary

- Key for the stratospheric influence are
 - persistence and decadal power of vortex events
 - vortex events project on NAO
 - NAO nodal point coincides with downwelling region
 - downwelling region is AMOC's "Achilles heel"
 - AMOC is intrinsically unstable

How Important?

- AMOC is important for decadal climate variations
- AMOC changes by
 - CM2.1: ±0.4 Sv (0.2 std)
 - CMIP5: 0.15 std
- CM2.1 underestimates effect of vortex events
 stratosphere resolving models are needed
- Effect in real atmosphere is likely more important

Decadal Predictability

- Individual vortex events are unpredictable, which may limit the success of decadal predictions (AR5)
- Perhaps decadal rhythm of SSWs is real and predictable

Thank You

Extra figures

NAM Spectra

- NAM is polar cap averaged Z
- 50 frequency bands
- CM2.1: 1001-4000
- L24: 2001-4000
- L48:

CM2.1 Control Run

- 24 levels, not stratosphere resolving, no QBO, ...
- 4000 years, constant (1860) forcings

CMIP5 Control Runs

• CMIP5

- 18 models (\geq 500 years)
- normalize and concatenate AMOC
- ca. 50% high-top models
- 12,944 years

Stratosphere

Stratospheric Sudden Warmings (SSWs)

Troposphere

Northern Annular Mode (NAM)

Ocean **S**urface

North Atlantic Oscillation (NAO)

Deep

Atlantic Meridional Overturning Circulation (AMOC)

AMOC

CM2.1

50 strong and 46 weak events

143 strong and 144 weak events

CMIP5 - LOW

127 strong and 133 weak events

Proposed Mechanism

AMOC is intrinsically unstable; self-sustained oscillations

Stochastic Climate Model Paradigm

Atmosphere

Random atmospheric heat flux forcing (white noise)

Ocean

The mixed layer temperature response (red noise)

Slow variations induced by random (e.g., unpredictable) atmospheric forcing simply due to thermal inertia associated with a deep mixed layer

Deser et al., Annu. Rev. Mar. Sci. 2010

What Controls AMOC Response?

- Examine different NAM10 criteria 0.4
 - increasing strength: 0.25 ... 3 SDEV
 - at discrete periods: 7 ... 48 years

 As expected, strong NAM10 variations with power at intrinsic AMOC frequency (~20 years) are most capable of driving AMOC

"Baldwin and Dunkerton" Composites

Normalized NAM at each level composited on NAM at 30 hPa (NAM₃₀ < -3)

AMOC in CM2.1

CM2.1

- strength: 26 Sv
- standard deviation: 1.6 Sv
- periodicity: 20 years

Observations

- strength: ~17 Sv
- standard deviation: ?
- periodicity: 60 years (AMO)

Cross-correlation

:NAM50 and NNA-SST (yellow) :NAM500 and NNA-SST (blue) :NAO and NNA-SST (red)

Solid: Annual (DJFM)

Lag (years)

thick black: x1 FWHM= 3 years

