An Evaluation of Arctic Surface Temperature in Hind-cast and AMIP runs in CAM4 and CAM5

2013 PCWG/AMWG Joint Session

Boulder, Colorado 02/13/2013

Neil P. Barton, Stephen A. Klein, and James S. Boyle

Motivation

Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison

Atmospheric Models

- CAM4 and CAM5
- Hind-Cast/CAPT mode and AMIP mode
 - Forecast runs are forced by analysis from the European Center for Medium Range Forecasting Year of Tropical Convection (ECMWF-YOTC)
 - From 2008-05 to 2010-03
 - 3 Hour Temporal Resolution over Globe
 - 1 Hour Temporal Resolution at Barrow, AK

	CAM4	CAM5
Cloud Macrophysics Parameterization	Zhang et al. (2003)	Park-Bretherton-Rash (2010)
Cloud Microphysics Parameterization	Rasch-Kristjansoon (1998)	Morrison and Gettelman (2008)
Marine Stratocumulus Parameterization	based on Klein and Hartmann (1993)	none
Freeze-Dry Cloud Parameterization	Vavrus and Waliser (2008)	none
Boundary Layer Turbulence Parameterization	Holtslag-Boville (1993)	Bretherton and Park (2009)
Shallow Convection Parameterization	Hack (1994)	Park and Bretherton (2009)
Deep Convection Parameterization	Zhang and McFarlane (1995)	Zhang and McFarlane (1995)
Number of Vertical Levels	26	30

Analysis Across the Arctic Domain

• ECMWF-YOTC Analysis Data

Monthly Results

Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison

What About Actual Data? Climate Modeling Best Estimate (CMBE) data

- 1 hour temporal resolution

Barrow, Alaska (NSA

Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison

Focus on November and December because these biases are most similar to the Arctic domain Average.

Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison

Why Does This Bias Exist?

Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison Neil P. Barton

What About Other Models?

Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison Neil P. Barton

What About Other Models?

Transpose AMIP

- HadGEM2-A, IPSL-CM5A-LR, CNRM-CM5, MIROC5, CAM4, & CAM5
- 16 Forecast Runs for Each Season
 - Autumn (October 15th, 2008 to November 2nd, 2008)
 - Winter (January 15th, 2009 to February 2nd, 2009)
 - Spring (April 15th, 2009 to May 3rd, 2009)
 - Summer (July 15th, 2009 to August 2nd, 2009)

What About Other Models?

Transpose AMIP

- HadGEM2-A, IPSL-CM5A-LR, CNRM-CM5, MIROC5, CAM4, & CAM5
- 16 Forecast Runs for Each Season
 - Autumn (October 15th, 2008 to November 2nd, 2008)
 - Winter (January 15th, 2009 to February 2nd, 2009)
 - Spring (April 15th, 2009 to May 3rd, 2009)
 - Summer (July 15th, 2009 to August 2nd, 2009)

Conclusions

- CAM4 and CAM5 have a cold bias in the Arctic winter months
 - Forecast and AMIP runs
- Compared to the NSA data, the bias occurs during clear sky periods and when the observations are opaquely cloudy, but the models are radiative clear
- The spread of Arctic surface temperature in the transpose AMIP relates to the frequency of clouds with liquid water at a threshold

Thank You!

Neil P. Barton

Source: NASA Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison barton30@IInl.gov