Arctic Cloud Feedbacks in a 4xCO₂ Simulation with the Superparameterized CESM

Melissa A. Burt, David A. Randall, Mark D. Branson Colorado State University

> Eli Tziperman Harvard University

Joint Session AMWG/PCWG

February 13, 2013

What is Superparameterization?

Traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid cell of a GCM.

Previous work using Superparameterization:

The Madden Julian Oscillation

(Benedict and Randall, 2009; Thayer-Calder and Randall, 2009)

Diurnal Cycle of Precipitation

(Pritchard and Somerville, 2009)

El Nino Southern Oscillation

(Stan et al., 2010)

The Asian Monsoon

(DeMott et al., 2011 and 2012)

West African Monsoon

(McCrary 2012)

Like a public opinion poll, the superparameterization represents a sample of the cloud-scale processes in each grid cell.

Sea Ice Area (%)

Mean SLP (mb)

Experimental Design

- Fully-coupled **CESM1.0.2**, CAM4 Physics, Finite Volume dynamical core
- 1.9°x2.5° grid for atmos and land components with the gx1v6 displaced pole grid for ocean and ice
- 25-year spinup simulation holding all trace gases constant (initialized from year 501of the b40.1850.track1.2deg.003 simulation)
- Followed by 1% per year CO₂ increase
- SpCESM 10-year sim started from end of CESM 4xPI
- SAM single-moment microphysics, 4km CRM grid spacing

Mean Global and Arctic response to increased CO₂

	Global CTL (4x)	Arctic
Surface Temp, K	287 (292)	258 (270)
Total Precip, mm/day	2.8 (3.13)	0.86 (1.33)
Precip. Water, mm	23 (31)	6.5 (10.8)
Low Cloud, %	35 (36)	38 (68)
Total Cloud, %	53 (53)	67 (76)
SWCE, W/m ²	-54 (-50)	-18 (-32)
LWCE, W/m ²	32 (<mark>28</mark>)	12 (17)

Weaker in 4x Stronger in 4x

Annual mean statistics for the Arctic (70-90N) for SpCESM 4xPI relative to its control.

The Arctic warms up.

More sea ice melts.

The Arctic gets cloudier.

Downwelling LW at surface gets stronger.

Downwelling Longwave Radiation (W/m²)

Cloud Contribution (W/m²)

2m Temperature (K) November

4xCO2 - CTL

220 230 240 250 260 270 280 290

Near Surface Wind (m/s) November

4xCO2 - CTL

Omega (mb/day) 850 mb November

Cloud Feedback in the Arctic Winter

•Sea ice decreases.

- Arctic Ocean becomes warmer than surrounding continents during fall/winter.
- This leads to low-level convergence and rising motion.
- Water vapor and cloudiness increase.
- Stronger DLR promotes further thinning of the sea ice.

Conclusion

Model supports strong positive feedback that operates in fall/winter.

Next Steps

• Further examine feedback in this warmer Arctic environment.

- Breakdown processes that contribute to increased DLR (Ts, PW, Increased CO2).
- Look for changes in observations.

Thank you.

Melissa A. Burt Colorado State University <u>mburt@atmos.colostate.edu</u>