

Chemistry-Climate Working Group

Jean-François Lamarque (NCAR) Steve Ghan (PNNL) Peter Hess (Cornell) Liaison: Simone Tilmes (NCAR) Aerosol Liaison: Po-Lun Ma (NCAR) Software engineer: Francis Vitt (NCAR)

Mission

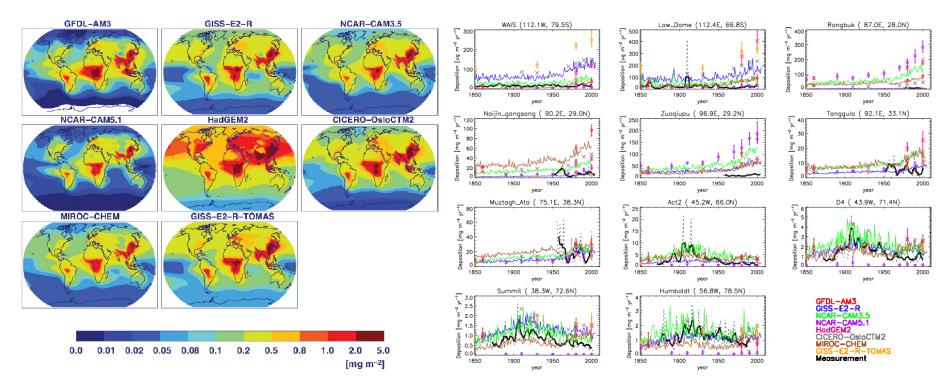
The Community Earth System Model chemistryclimate working group is formed to focus on the coupling between the climate system, aerosols, atmospheric composition and chemistry.

Focus on CAM5

- Understand chemistry differences between CAM4/BAM and CAM5/MAM
- Bring ammonium nitrate in MAM (MAM3 or MAM4)
- Integrate diagnostics from AeroCOM into released version
- Start testing online photolysis (collaboration with LLNL and U. C. Irvine)

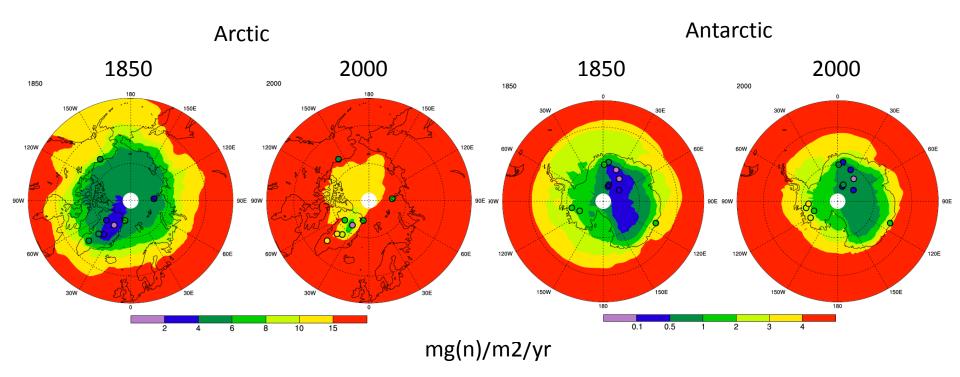
Recent release: new features

- Implementation of full chemistry with MAM3/MAM7 (new compsets)
- Expanded representation of secondary organic aerosols (in BAM), including a more speciated representation of biogenic emissions (MEGAN2.1)


Recent achievements

- Support of CMIP5 simulations
 - Concentrations of radiatively-active aerosols and gases for CCSM4
 - Oxidants for MAM/CAM5
 - Nitrogen deposition for CLM-CN
 - Black carbon deposition on snow and ice
- All aspects are now discussed in ACP/GMD special issue: ACCMIP

BC deposition


Fixes for underestimate in CAM5.1 is now available (scavenging) and upcoming implementation of MAM4 (Xiaohong's talk)

Lee et al., ACPD, 2012

Nitrogen deposition: pre-industrial to present-day

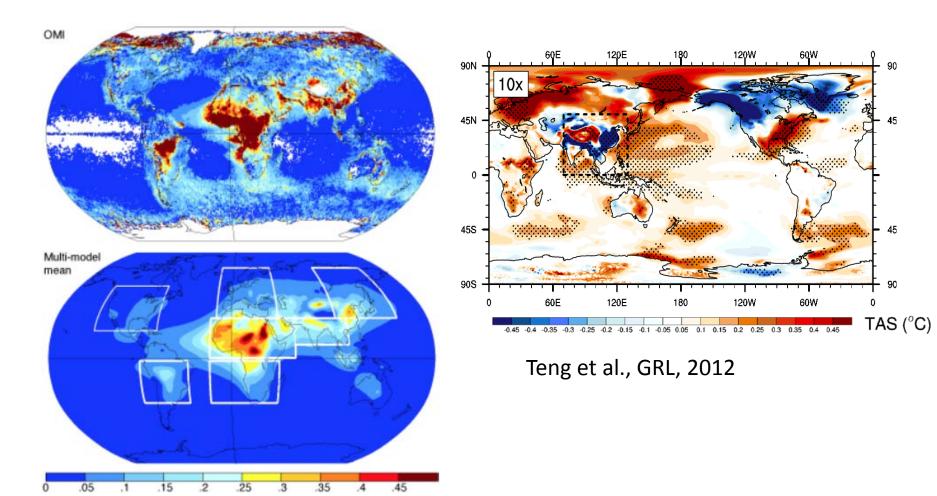
Lamarque et al., submitted, 2013

Link with WACCM WG

- Very strong collaboration to
 - eliminate code duplications cross-use approaches (e. g. SAD from WACCM; aerosols from CAM-chem)
 - Complete integration of stratospheric (and above) chemistry within a singleframework (e.g. CCMI simulations with WACCM and CAM-chem)

Upcoming participation to international activities

- GeoMIP: look at chemical impacts of Solar Radiation Management
- CCMI
 - Hindcast experiment (led by P. Hess): focus on 1960-present reconstruction of tropospheric and stratospheric changes in atmospheric composition
 - Forecast 1960-2100


Upcoming topics of research

- Importance of natural aerosols:
 - Oceanic sources of organic aerosols (Primary and secondary)
 - Land sources of organic aerosols and interaction with anthropogenic emissions
 - Sea-ice sources of halogens/DMS
- Interaction with methane and fire emissions
- Remote impact of regional emissions

Absorbing aerosols

Shindell et al., ACPD, 2012

Topics of present development & research

testing the representation of chemistry and aerosols in CESM and evaluating existing and forthcoming CAM configurations, including:

- CAM5 physics, especially the coupling of interactive gasphase chemistry and the modal aerosols and the impact of the new planetary-boundary layer parameterization
- improved modeling capabilities for new chemistry to allow for better process understanding (e.g., isoprene oxidation mechanisms and tropospheric halogen chemistry)
- improved modeling capabilities for different dynamical cores (SciDAC proposal) and horizontal resolutions